Suppr超能文献

通过敲除EU7-22中的-基因提高低聚木糖产量。

Improvement in xylooligosaccharides production by knockout of the - gene in EU7-22.

作者信息

Long Chuannan, Cui Jingjing, Li Hailong, Liu Jian, Gan Lihui, Zeng Bin, Long Minnan

机构信息

Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013 People's Republic of China.

School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013 People's Republic of China.

出版信息

3 Biotech. 2018 Jan;8(1):26. doi: 10.1007/s13205-017-1041-x. Epub 2017 Dec 20.

Abstract

The goal of this study was to enhance the production of xylooligosaccharides (XOs) and reduce the production of xylose. We investigated β-xylosidases, which were key enzymes in the hydrolysis of xylan into xylose, in EU7-22. The binary vector pUR5750G/:: was constructed to knock out the - gene (encoding β-xylosidases) in EU7-22 by homologous integration, producing the mutant strain Bxyl-1. Xylanase activity for strain Bxyl-1 was 452.42 IU/mL, which increased by only 0.07% compared to that of parental strain EU7-22, whereas β-xylosidase activity was 0.06 IU/mL, representing a 91.89% decrease. When xylanase (200 IU/g xylan), produced by EU7-22 and Bxyl-1, was used to hydrolyze beechwood xylan, in contrast to the parental strain, the XOs were enhanced by 83.27%, whereas xylose decreased by 45.80% after 36 h in Bxyl-1. Based on these results, Bxyl-1 has great potential for application in the production of XOs from lignocellulosic biomass.

摘要

本研究的目标是提高低聚木糖(XOs)的产量并减少木糖的产生。我们研究了EU7-22中β-木糖苷酶,其是木聚糖水解为木糖过程中的关键酶。构建二元载体pUR5750G/::,通过同源整合敲除EU7-22中的 - 基因(编码β-木糖苷酶),产生突变菌株Bxyl-1。Bxyl-1菌株的木聚糖酶活性为452.42 IU/mL,与亲本菌株EU7-22相比仅增加了0.07%,而β-木糖苷酶活性为0.06 IU/mL,降低了91.89%。当用EU7-22和Bxyl-1产生的木聚糖酶(200 IU/g木聚糖)水解山毛榉木聚糖时,与亲本菌株相比,Bxyl-1在36小时后低聚木糖增加了83.27%,而木糖减少了45.80%。基于这些结果,Bxyl-1在从木质纤维素生物质生产低聚木糖方面具有巨大的应用潜力。

相似文献

1
Improvement in xylooligosaccharides production by knockout of the - gene in EU7-22.
3 Biotech. 2018 Jan;8(1):26. doi: 10.1007/s13205-017-1041-x. Epub 2017 Dec 20.
4
5
Co-production of Xylooligosaccharides and Xylose From Poplar Sawdust by Recombinant Endo-1,4-β-Xylanase and β-Xylosidase Mixture Hydrolysis.
Front Bioeng Biotechnol. 2021 Feb 1;8:637397. doi: 10.3389/fbioe.2020.637397. eCollection 2020.
6
Production of High Commercial Value Xylooligosaccharides from Meranti Wood Sawdust Using Immobilised Xylanase.
Appl Biochem Biotechnol. 2018 Jan;184(1):278-290. doi: 10.1007/s12010-017-2542-0. Epub 2017 Jul 4.
7
Effect of VIB Gene on Cellulase Production of Trichoderma orientalis EU7-22.
Appl Biochem Biotechnol. 2020 Aug;191(4):1444-1455. doi: 10.1007/s12010-020-03260-7. Epub 2020 Feb 29.
8
Effects of the Transcription Factor Ace2 from Trichoderma reesei on Cellulase and Hemicellulase Expression in Trichoderma orientalis EU7-22.
Appl Biochem Biotechnol. 2021 Jul;193(7):2098-2109. doi: 10.1007/s12010-021-03529-5. Epub 2021 Feb 19.
9
Heterologous Expression and Characterization of an Acidic GH11 Family Xylanase from Hypocrea orientalis.
Appl Biochem Biotechnol. 2018 Jan;184(1):228-238. doi: 10.1007/s12010-017-2532-2. Epub 2017 Jul 3.

本文引用的文献

1
Synergistic hydrolysis of xylan using novel xylanases, β-xylosidases, and an α-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2.
Appl Microbiol Biotechnol. 2017 Aug;101(15):6023-6037. doi: 10.1007/s00253-017-8341-2. Epub 2017 Jun 14.
2
Research Progress Concerning Fungal and Bacterial β-Xylosidases.
Appl Biochem Biotechnol. 2016 Feb;178(4):766-95. doi: 10.1007/s12010-015-1908-4. Epub 2015 Nov 4.
3
Cloning, expression and characterization of β-xylosidase from Aspergillus niger ASKU28.
Protein Expr Purif. 2015 Nov;115:132-40. doi: 10.1016/j.pep.2015.07.004. Epub 2015 Jul 9.
4
Rapid analysis of mono-saccharides and oligo-saccharides in hydrolysates of lignocellulosic biomass by HPLC.
Biotechnol Lett. 2013 Sep;35(9):1405-9. doi: 10.1007/s10529-013-1224-4. Epub 2013 May 21.
6
Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics.
Bioresour Technol. 2012 Jul;115:215-21. doi: 10.1016/j.biortech.2011.10.083. Epub 2011 Oct 31.
7
Enhanced gene replacement frequency in KU70 disruption strain of Stagonospora nodorum.
Microbiol Res. 2012 Mar 20;167(3):173-8. doi: 10.1016/j.micres.2011.05.004. Epub 2011 Jun 8.
9
Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses.
Appl Microbiol Biotechnol. 2010 Jul;87(4):1463-73. doi: 10.1007/s00253-010-2588-1. Epub 2010 Apr 27.
10
New tools for the genetic manipulation of filamentous fungi.
Appl Microbiol Biotechnol. 2010 Mar;86(1):51-62. doi: 10.1007/s00253-009-2416-7. Epub 2010 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验