Unité Récepteurs-Canaux, Unité Mixte de Recherche 3571 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France.
Unité de Dynamique Structurale des Macromolécules, Unité Mixte de Recherche 3528 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France.
PLoS Biol. 2017 Dec 27;15(12):e2004470. doi: 10.1371/journal.pbio.2004470. eCollection 2017 Dec.
The Gloeobacter violaceus ligand-gated ion channel (GLIC) has been extensively studied by X-ray crystallography and other biophysical techniques. This provided key insights into the general gating mechanism of pentameric ligand-gated ion channel (pLGIC) signal transduction. However, the GLIC is activated by lowering the pH and the location of its putative proton activation site(s) still remain(s) unknown. To this end, every Asp, Glu, and His residue was mutated individually or in combination and investigated by electrophysiology. In addition to the mutational analysis, key mutations were structurally resolved to address whether particular residues contribute to proton sensing, or alternatively to GLIC-gating, independently of the side chain protonation. The data show that multiple residues located below the orthosteric site, notably E26, D32, E35, and D122 in the lower part of the extracellular domain (ECD), along with E222, H235, E243, and H277 in the transmembrane domain (TMD), alter GLIC activation. D122 and H235 were found to also alter GLIC expression. E35 is identified as a key proton-sensing residue, whereby neutralization of its side chain carboxylate stabilizes the active state. Thus, proton activation occurs allosterically to the orthosteric site, at the level of multiple loci with a key contribution of the coupling interface between the ECD and TMD.
紫细菌中的配体门控离子通道(GLIC)已经通过 X 射线晶体学和其他生物物理技术进行了广泛的研究。这为研究五聚体配体门控离子通道(pLGIC)信号转导的一般门控机制提供了关键的见解。然而,GLIC 的激活是通过降低 pH 值实现的,其假定的质子激活位点(s)的位置仍然未知。为此,每个天冬氨酸、谷氨酸和组氨酸残基都被单独或组合突变,并通过电生理学进行了研究。除了突变分析,还对关键突变进行了结构解析,以确定特定残基是否有助于质子感应,或者是否独立于侧链质子化而有助于 GLIC 门控。数据表明,多个位于正位点下方的残基,特别是细胞外域(ECD)下部的 E26、D32、E35 和 D122,以及跨膜域(TMD)中的 E222、H235、E243 和 H277,改变了 GLIC 的激活。还发现 D122 和 H235 也改变了 GLIC 的表达。E35 被确定为关键的质子感应残基,其侧链羧酸根的中和稳定了活性状态。因此,质子激活是通过变构作用发生在正位点上,在多个位置上发生,其中 ECD 和 TMD 之间的耦合界面有重要贡献。