Sakamoto Shigeru, Yoshikawa Masashi, Ozawa Kota, Kuroda Yoshiyuki, Shimojima Atsushi, Kuroda Kazuyuki
Department of Applied Chemistry, Waseda University , 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
Waseda Institute for Advanced Study, Waseda University , 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan.
Langmuir. 2018 Jan 30;34(4):1711-1717. doi: 10.1021/acs.langmuir.7b04042. Epub 2018 Jan 9.
There are emerging demands for single-digit nanoscale particles in multidisciplinary fields, such as nanomedicine, optics, catalysis, and sensors, to create new functional materials. Here, we report a novel route to prepare silica nanoparticles less than 3 nm in size via the evaporation-induced self-assembly of silicate species and quaternary trialkylmethylammonium surfactants, which usually form reverse micelles. The solvent evaporation induces a local concentration increase and simultaneous polycondensation of silicate species within the hydrophilic region of the surfactant mesophases. Extremely small silica nanoparticles in the silica-surfactant mesostructures can be stably dispersed in organic solvents by destroying the mesostructure, which is in clear contrast to the preparation of silica nanoparticles using the conventional reverse micelle method. The surface chemical modification of the formed silica nanoparticles is easily performed by trimethylsilylation. The particle size is adjustable by changing the ratio of the surfactants to the silica source because the hydrophobic/hydrophilic ratio determines the curvature and diameter of the resulting spherical silica-surfactant domains in the mesostructure. The versatility of this method is demonstrated by the fabrication of very small titania nanoparticles. These findings will increase the designability of oxide nanoparticles at the single-digit nanoscale because conventional methods based on the generation and growth of nuclei in a solution cannot produce such nanoparticles with highly regulated sizes.
在纳米医学、光学、催化和传感器等多学科领域,对个位数纳米级颗粒的需求不断涌现,以制造新型功能材料。在此,我们报告了一种通过硅酸盐物种和季铵三烷基甲基铵表面活性剂的蒸发诱导自组装来制备尺寸小于3 nm的二氧化硅纳米颗粒的新途径,这些表面活性剂通常形成反胶束。溶剂蒸发导致表面活性剂中间相亲水区域内硅酸盐物种的局部浓度增加并同时发生缩聚反应。通过破坏介孔结构,二氧化硅-表面活性剂介孔结构中的极小二氧化硅纳米颗粒可以稳定地分散在有机溶剂中,这与使用传统反胶束法制备二氧化硅纳米颗粒形成鲜明对比。通过三甲基硅烷化可以轻松地对形成的二氧化硅纳米颗粒进行表面化学改性。由于疏水/亲水比决定了介孔结构中所得球形二氧化硅-表面活性剂域的曲率和直径,因此可以通过改变表面活性剂与二氧化硅源的比例来调节粒径。通过制备非常小的二氧化钛纳米颗粒证明了该方法的通用性。这些发现将提高个位数纳米级氧化物纳米颗粒的可设计性,因为基于溶液中核的生成和生长的传统方法无法生产出尺寸高度可控的此类纳米颗粒。