Suppr超能文献

Evaluation of different adsorbents for acidity reduction in residual oils.

作者信息

Miyashiro Carolina Sayury, Bonassa Gabriela, Schneider Lara Talita, Parisotto Emanuelle Iaçana Berté, Alves Helton José, Teleken Joel Gustavo

机构信息

a Department of Chemical Engineering , West Parana State University , Toledo , Brazil.

b Department of Engineering and Exact , Federal University of Parana , Palotina , Brazil.

出版信息

Environ Technol. 2019 Apr;40(11):1438-1454. doi: 10.1080/09593330.2017.1422807. Epub 2018 Jan 18.

Abstract

This work aims to evaluate the adsorption potential of bentonite and sugarcane bagasse clay for the reduction of free fatty acids in cooking oil through batch technique, experimental planning with different operating conditions (temperature, adsorbent mass and agitation). After were carried out kinetic studies and thermodynamic studies. Thus, both adsorbents were characterized by nitrogen dispersion, scanning electron microscopy with coupled energy dispersion spectroscopy. The sugarcane bagasse provided higher reductions compared to the bentonite clay, 58 and 50%, respectively. In the kinetic studies, it was observed that the pseudo-secunda model for both materials. Among the isotherms studied, the Langmuir model was better adjusted for sugarcane bagasse and Freundlich for bentonite clay. Thermodynamic parameters indicated spontaneous and endothermic adsorption at temperatures of 18°C, 20°C and 25°C. Both materials showed an advantageous result with the reduction to the adsorption of free fatty acids in the residual oil, considering that they are low-cost materials, their pre-treatment is simple from the operational point of view and their physical and chemical characteristics are favorable to the adsorption process, sugarcane bagasse contains about 42% hemicellulose, which is a hydroxyl-rich material that attracts the H ions from the medium.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验