Suppr超能文献

高碳、富硅铝纳米结构贝氏体钢的高周推挽疲劳断裂行为

High-Cycle, Push-Pull Fatigue Fracture Behavior of High-C, Si-Al-Rich Nanostructured Bainite Steel.

作者信息

Zhao Jing, Ji Honghong, Wang Tiansheng

机构信息

State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.

National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China.

出版信息

Materials (Basel). 2017 Dec 29;11(1):54. doi: 10.3390/ma11010054.

Abstract

The high-cycle, push-pull fatigue fracture behavior of high-C, Si-Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push-pull fatigue limits at 10⁷ cycles were estimated as 710-889 MPa, for the samples isothermally transformed at the temperature range of 220-260 °C through data extrapolation, measured under the maximum cycle number of 10⁵. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite.

摘要

通过测量疲劳极限、对疲劳断口进行形貌检查和相组成分析以及对疲劳裂纹扩展进行断口分析,研究了高碳、富硅铝纳米结构贝氏体钢的高周推拉疲劳断裂行为。结果表明,通过数据外推,对于在220-260℃温度范围内等温转变的样品,在最大循环次数为10⁵次的条件下测量得到,10⁷次循环时的推拉疲劳极限估计为710-889MPa。内部夹杂物和样品表面均构成疲劳裂纹源。在疲劳裂纹扩展过程中,大量二次裂纹几乎平行排列形成。断口表层发生明显塑性变形,致使几乎所有残余奥氏体转变为马氏体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65cb/5793552/658b53a89156/materials-11-00054-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验