Mégevand Pierre, Woodtli Alain, Yulzari Aude, Cosgrove G Rees, Momjian Shahan, Stimec Bojan V, Corniola Marco V, Fasel Jean H D
Wyss Center for Bio and Neuroengineering, Geneva; Division of Neurology, Department of Clinical Neuroscience, Geneva University Hospitals;
Wyss Center for Bio and Neuroengineering, Geneva.
J Vis Exp. 2017 Nov 19(129):56584. doi: 10.3791/56584.
This protocol describes a procedure to assist surgeons in training for the implantation of microelectrode arrays into the neocortex of the human brain. Recent technological progress has enabled the fabrication of microelectrode arrays that allow recording the activity of multiple individual neurons in the neocortex of the human brain. These arrays have the potential to bring unique insight onto the neuronal correlates of cerebral function in health and disease. Furthermore, the identification and decoding of volitional neuronal activity opens the possibility to establish brain-computer interfaces, and thus might help restore lost neurological functions. The implantation of neocortical microelectrode arrays is an invasive procedure requiring a supra-centimetric craniotomy and the exposure of the cortical surface; thus, the procedure must be performed by an adequately trained neurosurgeon. In order to provide an opportunity for surgical training, we designed a procedure based on a human cadaver model. The use of a formaldehyde-fixed human cadaver bypasses the practical, ethical and financial difficulties of surgical practice on animals (especially non-human primates) while preserving the macroscopic structure of the head, skull, meninges and cerebral surface and allowing realistic, operating room-like positioning and instrumentation. Furthermore, the use of a human cadaver is closer to clinical daily practice than any non-human model. The major drawbacks of the cadaveric simulation are the absence of cerebral pulsation and of blood and cerebrospinal fluid circulation. We suggest that a formaldehyde-fixed human cadaver model is an adequate, practical and cost-effective approach to ensure proper surgical training before implanting microelectrode arrays in the living human neocortex.
本方案描述了一种协助外科医生进行将微电极阵列植入人脑海马体训练的程序。最近的技术进步使得制造微电极阵列成为可能,这种阵列能够记录人脑海马体中多个单个神经元的活动。这些阵列有可能为健康和疾病状态下大脑功能的神经元相关性带来独特的见解。此外,对自主神经元活动的识别和解码为建立脑机接口开辟了可能性,从而可能有助于恢复丧失的神经功能。海马体微电极阵列的植入是一种侵入性手术,需要进行超过厘米级的开颅手术并暴露皮质表面;因此,该手术必须由训练有素的神经外科医生进行。为了提供手术训练的机会,我们基于人体尸体模型设计了一种程序。使用甲醛固定的人体尸体绕过了在动物(尤其是非人灵长类动物)身上进行手术实践的实际、伦理和经济困难,同时保留了头部、颅骨、脑膜和脑表面的宏观结构,并允许进行逼真的、类似手术室的定位和器械操作。此外,使用人体尸体比任何非人类模型更接近临床日常实践。尸体模拟的主要缺点是缺乏脑搏动以及血液和脑脊液循环。我们认为,甲醛固定的人体尸体模型是一种合适、实用且具有成本效益的方法,可确保在将微电极阵列植入活人海马体之前进行适当的手术训练。