Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
Eur J Hum Genet. 2018 Feb;26(2):186-196. doi: 10.1038/s41431-017-0011-4. Epub 2017 Dec 30.
FOXG1 syndrome is caused by FOXG1 intragenic point mutations, or by long-range position effects (LRPE) of intergenic structural variants. However, the size of the FOXG1 regulatory landscape is uncertain, because the associated topologically associating domain (TAD) in fibroblasts is split into two domains in embryonic stem cells (hESC). Indeed, it has been suggested that the pathogenetic mechanism of deletions that remove the stem-cell-specific TAD boundary may be enhancer adoption due to ectopic activity of enhancer(s) located in the distal hESC-TAD. Herein we map three de novo translocation breakpoints to the proximal regulatory domain of FOXG1. The classical FOXG1 syndrome in these and in other translocation patients, and in a patient with an intergenic deletion that removes the hESC-specific TAD boundary, do not support the hypothesised enhancer adoption as a main contributor to the FOXG1 syndrome. Also, virtual 4 C and HiC-interaction data suggest that the hESC-specific TAD boundary may not be critical for FOXG1 regulation in a majority of human cells and tissues, including brain tissues and a neuronal progenitor cell line. Our data support the importance of a critical regulatory region (SRO) proximal to the hESC-specific TAD boundary. We further narrow this critical region by a deletion distal to the hESC-specific boundary, associated with a milder clinical phenotype. The distance from FOXG1 to the SRO ( > 500 kb) highlight a limitation of ENCODE DNase hypersensitivity data for functional prediction of LRPE. Moreover, the SRO has little overlap with a cluster of frequently associating regions (FIREs) located in the proximal hESC-TAD.
FOXG1 综合征是由 FOXG1 基因内点突变引起的,或由基因间结构变异的长程位置效应(LRPE)引起的。然而,FOXG1 调控区的大小尚不确定,因为成纤维细胞中的相关拓扑关联域(TAD)在胚胎干细胞(hESC)中分裂为两个域。事实上,有人提出,缺失去除干细胞特异性 TAD 边界的致病机制可能是由于位于远端 hESC-TAD 中的增强子的异位活性而导致的增强子采用。在此,我们将三个从头易位断点映射到 FOXG1 的近端调控区。在这些患者和其他易位患者以及具有去除 hESC 特异性 TAD 边界的基因间缺失的患者中,经典的 FOXG1 综合征并不支持增强子采用作为 FOXG1 综合征的主要贡献者的假设。此外,虚拟 4C 和 HiC 相互作用数据表明,hESC 特异性 TAD 边界对于大多数人类细胞和组织(包括脑组织和神经祖细胞系)中的 FOXG1 调控可能不是关键的。我们的数据支持紧邻 hESC 特异性 TAD 边界的关键调控区(SRO)的重要性。我们通过与更温和的临床表型相关的 hESC 特异性边界下游的缺失进一步缩小了这个关键区域。FOXG1 到 SRO 的距离(>500kb)突出了 ENCODE DNase 超敏数据对于 LRPE 功能预测的局限性。此外,SRO 与位于近端 hESC-TAD 中的经常关联区域(FIREs)簇几乎没有重叠。