Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan.
Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan; Fujii Memorial Research Institute, Otsuka Pharmaceutical Company, Limited, Shiga 520-0106, Japan.
Cell Stem Cell. 2018 Feb 1;22(2):171-176.e5. doi: 10.1016/j.stem.2017.11.012. Epub 2017 Dec 28.
Genetic lineage tracing has revealed that Lgr5 murine colon stem cells (CoSCs) rapidly proliferate at the crypt bottom. However, the spatiotemporal dynamics of human CoSCs in vivo have remained experimentally intractable. Here we established an orthotopic xenograft system for normal human colon organoids, enabling stable reconstruction of the human colon epithelium in vivo. Xenografted organoids were prone to displacement by the remaining murine crypts, and this could be overcome by complete removal of the mouse epithelium. Xenografted organoids formed crypt structures distinctively different from surrounding mouse crypts, reflecting their human origin. Lineage tracing using CRISPR-Cas9 to engineer an LGR5-CreER knockin allele demonstrated self-renewal and multipotency of LGR5 CoSCs. In contrast to the rapidly cycling properties of mouse Lgr5 CoSCs, human LGR5 CoSCs were slow-cycling in vivo. This organoid-based orthotopic xenograft model enables investigation of the functional behaviors of human CoSCs in vivo, with potential therapeutic applications in regenerative medicine.
遗传谱系追踪显示,Lgr5 小鼠结肠干细胞(CoSCs)在隐窝底部快速增殖。然而,人体内 CoSCs 的时空动态在实验上仍然难以捉摸。在这里,我们建立了一个用于正常人类结肠类器官的原位异种移植系统,能够在体内稳定重建人类结肠上皮。异种移植的类器官容易被剩余的小鼠隐窝移位,通过完全去除小鼠上皮可以克服这个问题。异种移植的类器官形成的隐窝结构明显不同于周围的小鼠隐窝,反映了它们的人类起源。使用 CRISPR-Cas9 进行谱系追踪,构建了一个 LGR5-CreER knockin 等位基因,证明了 LGR5 CoSCs 的自我更新和多能性。与小鼠 Lgr5 CoSCs 的快速循环特性相比,人体内的 LGR5 CoSCs 在体内的循环速度较慢。这种基于类器官的原位异种移植模型能够在体内研究人类 CoSCs 的功能行为,并在再生医学中有潜在的治疗应用。