Suppr超能文献

原位形貌和力学加载下弹性模量观察揭示皮质骨中胶原原纤维的变形机制。

Deformation regimes of collagen fibrils in cortical bone revealed by in situ morphology and elastic modulus observations under mechanical loading.

机构信息

Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Youyi Xilu 127, 710072 Xi'an, Shaanxi, China; Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Fictitious College Garden, Gaoxin Fourth South Road 19, Nanshan District Science and Technology Park, 518057 Shenzhen, Guangdong, China.

Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Youyi Xilu 127, 710072 Xi'an, Shaanxi, China.

出版信息

J Mech Behav Biomed Mater. 2018 Mar;79:115-121. doi: 10.1016/j.jmbbm.2017.12.015. Epub 2017 Dec 16.

Abstract

The mechanical properties of the bone play a decisive role in the resistance of the bone to fracture. Clinically, the quantity of the bone in the mineral phase has been considered as the gold-standard indicator for the risk of bone fracture. However, the bone is a complex tissue with a hierarchical-structure consisting of organic matrix, mineral hydroxyapatite, and water. Collagen comprises up to 90% of the organic matrix in the bone, and is vital for its mechanical behavior. To date, the morphological and mechanical responses of collagen fibrils in the bone matrix have been largely overlooked. In the present study, an atomic force microscopy-based imaging and indentation approach is introduced and integrated with a tibia axial loading model. The morphology of mineralized Type I collagen fibrils of the murine cortical tibia is imaged after demineralization, and the in situ elastic modulus of the fibrils is quantified at different loading conditions. Results suggested that the mineralized collagen fibrils are stretched in the early phase of bone deformation, characterized by the elongation of the D-periodic spacing. Reorientation of the collagen fibrils is demonstrated in the subsequent phase of bone deformation. The in situ radial elastic modulus of the collagen fibrils remained constant under the tested loading conditions. These experimental findings provide evidence in support of the unique deformation regimes of bone tissue from the perspective of alterations of mineralized collagen fibrils. This study allows the understanding of the unique mechanical behavior of the bone at the nanoscale, and reveals the mechanisms of relevant diseases that impair the mechanical properties of the bone.

摘要

骨骼的力学性能对骨骼抵抗骨折的能力起着决定性的作用。临床上,骨矿物质含量被认为是骨折风险的金标准指标。然而,骨骼是一种具有层次结构的复杂组织,由有机基质、羟磷灰石矿物质和水组成。胶原蛋白构成了骨骼有机基质的 90%,对其力学性能至关重要。迄今为止,骨骼基质中胶原蛋白纤维的形态和力学响应在很大程度上被忽视了。本研究介绍了一种基于原子力显微镜的成像和压痕方法,并与胫骨轴向加载模型相结合。在脱矿化后对鼠皮质胫骨的矿化 I 型胶原蛋白纤维的形态进行成像,并在不同加载条件下定量测量纤维的原位弹性模量。结果表明,矿化胶原纤维在骨骼变形的早期被拉伸,其特征是 D 周期间距的伸长。在骨骼变形的后续阶段,胶原纤维发生了重定向。在测试的加载条件下,胶原纤维的原位径向弹性模量保持不变。这些实验结果为从矿化胶原纤维变化的角度支持骨骼组织独特的变形机制提供了证据。本研究有助于理解骨骼在纳米尺度下的独特力学行为,并揭示了相关疾病损害骨骼机械性能的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验