Suppr超能文献

免疫接种计划安全性研究中结局错误分类导致的偏倚。

Bias from outcome misclassification in immunization schedule safety research.

作者信息

Newcomer Sophia R, Kulldorff Martin, Xu Stan, Daley Matthew F, Fireman Bruce, Lewis Edwin, Glanz Jason M

机构信息

Kaiser Permanente Colorado, Institute for Health Research, Denver, CO, USA.

Colorado School of Public Health, Anschutz Medical Campus, Department of Epidemiology, Denver, CO, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2018 Feb;27(2):221-228. doi: 10.1002/pds.4374. Epub 2018 Jan 2.

Abstract

PURPOSE

The Institute of Medicine recommended conducting observational studies of childhood immunization schedule safety. Such studies could be biased by outcome misclassification, leading to incorrect inferences. Using simulations, we evaluated (1) outcome positive predictive values (PPVs) as indicators of bias of an exposure-outcome association, and (2) quantitative bias analyses (QBA) for bias correction.

METHODS

Simulations were conducted based on proposed or ongoing Vaccine Safety Datalink studies. We simulated 4 studies of 2 exposure groups (children with no vaccines or on alternative schedules) and 2 baseline outcome levels (100 and 1000/100 000 person-years), with 3 relative risk (RR) levels (RR = 0.50, 1.00, and 2.00), across 1000 replications using probabilistic modeling. We quantified bias from non-differential and differential outcome misclassification, based on levels previously measured in database research (sensitivity > 95%; specificity > 99%). We calculated median outcome PPVs, median observed RRs, Type 1 error, and bias-corrected RRs following QBA.

RESULTS

We observed PPVs from 34% to 98%. With non-differential misclassification and true RR = 2.00, median bias was toward the null, with severe bias (median observed RR = 1.33) with PPV = 34% and modest bias (median observed RR = 1.83) with PPV = 83%. With differential misclassification, PPVs did not reflect median bias, and there was Type 1 error of 100% with PPV = 90%. QBA was generally effective in correcting misclassification bias.

CONCLUSIONS

In immunization schedule studies, outcome misclassification may be non-differential or differential to exposure. Overall outcome PPVs do not reflect the distribution of false positives by exposure and are poor indicators of bias in individual studies. Our results support QBA for immunization schedule safety research.

摘要

目的

医学研究所建议开展儿童免疫接种计划安全性的观察性研究。此类研究可能因结局错误分类而产生偏倚,从而导致错误的推断。我们通过模拟评估了:(1)结局阳性预测值(PPV)作为暴露-结局关联偏倚的指标;(2)用于偏倚校正的定量偏倚分析(QBA)。

方法

基于已提议或正在进行的疫苗安全数据链研究进行模拟。我们模拟了4项研究,涉及2个暴露组(未接种疫苗或采用替代接种计划的儿童)和2个基线结局水平(100和1000/100 000人年),有3个相对危险度(RR)水平(RR = 0.50、1.00和2.00),使用概率模型进行1000次重复模拟。我们根据先前在数据库研究中测量的水平(灵敏度>95%;特异性>99%),对非差异性和差异性结局错误分类导致的偏倚进行了量化。我们计算了结局PPV的中位数、观察到的RR中位数、I型错误以及QBA后的偏倚校正RR。

结果

我们观察到PPV在34%至98%之间。在非差异性错误分类且真实RR = 2.00时,中位数偏倚趋向于无效值,PPV = 34%时存在严重偏倚(观察到的RR中位数 = 1.33),PPV = 83%时存在适度偏倚(观察到的RR中位数 = 1.83)。在差异性错误分类时,PPV不能反映中位数偏倚,PPV = 9{0}%时I型错误为100%。QBA通常能有效校正错误分类偏倚。

结论

在免疫接种计划研究中,结局错误分类可能与暴露无关或存在差异。总体结局PPV不能反映按暴露分类的假阳性分布情况,且在个体研究中是较差的偏倚指标。我们的结果支持将QBA用于免疫接种计划安全性研究。

相似文献

1
Bias from outcome misclassification in immunization schedule safety research.
Pharmacoepidemiol Drug Saf. 2018 Feb;27(2):221-228. doi: 10.1002/pds.4374. Epub 2018 Jan 2.
2
A primer on quantitative bias analysis with positive predictive values in research using electronic health data.
J Am Med Inform Assoc. 2019 Dec 1;26(12):1664-1674. doi: 10.1093/jamia/ocz094.
3
Assessing misclassification of vaccination status: Implications for studies of the safety of the childhood immunization schedule.
Vaccine. 2017 Apr 4;35(15):1873-1878. doi: 10.1016/j.vaccine.2017.02.058. Epub 2017 Mar 9.
4
Improved Correction of Misclassification Bias With Bootstrap Imputation.
Med Care. 2018 Jul;56(7):e39-e45. doi: 10.1097/MLR.0000000000000787.
6
White Paper on studying the safety of the childhood immunization schedule in the Vaccine Safety Datalink.
Vaccine. 2016 Feb 15;34 Suppl 1:A1-A29. doi: 10.1016/j.vaccine.2015.10.082.
7
Challenges in comparing the safety of different vaccination schedules.
Vaccine. 2013 Apr 19;31(17):2126-9. doi: 10.1016/j.vaccine.2013.02.054. Epub 2013 Mar 5.
8
Assessing Potential Confounding and Misclassification Bias When Studying the Safety of the Childhood Immunization Schedule.
Acad Pediatr. 2018 Sep-Oct;18(7):754-762. doi: 10.1016/j.acap.2018.03.007. Epub 2018 Mar 28.
10
Misclassification model for person-time analysis of automated medical care databases.
Am J Epidemiol. 1996 Oct 15;144(8):782-92. doi: 10.1093/oxfordjournals.aje.a009002.

本文引用的文献

1
Assessing misclassification of vaccination status: Implications for studies of the safety of the childhood immunization schedule.
Vaccine. 2017 Apr 4;35(15):1873-1878. doi: 10.1016/j.vaccine.2017.02.058. Epub 2017 Mar 9.
2
Probabilistic bias analysis in pharmacoepidemiology and comparative effectiveness research: a systematic review.
Pharmacoepidemiol Drug Saf. 2016 Dec;25(12):1343-1353. doi: 10.1002/pds.4076. Epub 2016 Sep 5.
3
Quantitative Bias Analysis in Regulatory Settings.
Am J Public Health. 2016 Jul;106(7):1227-30. doi: 10.2105/AJPH.2016.303199. Epub 2016 May 19.
6
White Paper on studying the safety of the childhood immunization schedule in the Vaccine Safety Datalink.
Vaccine. 2016 Feb 15;34 Suppl 1:A1-A29. doi: 10.1016/j.vaccine.2015.10.082.
7
Risk of anaphylaxis after vaccination in children and adults.
J Allergy Clin Immunol. 2016 Mar;137(3):868-78. doi: 10.1016/j.jaci.2015.07.048. Epub 2015 Oct 6.
8
Identifying health outcomes in healthcare databases.
Pharmacoepidemiol Drug Saf. 2015 Oct;24(10):1009-16. doi: 10.1002/pds.3856. Epub 2015 Aug 18.
9
Misclassification in administrative claims data: quantifying the impact on treatment effect estimates.
Curr Epidemiol Rep. 2014 Dec;1(4):175-185. doi: 10.1007/s40471-014-0027-z.
10
Validation of an ICD-9-based claims algorithm for identifying patients with chronic idiopathic/spontaneous urticaria.
Ann Allergy Asthma Immunol. 2015 May;114(5):393-8. doi: 10.1016/j.anai.2015.02.003. Epub 2015 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验