Newcomer Sophia R, Kulldorff Martin, Xu Stan, Daley Matthew F, Fireman Bruce, Lewis Edwin, Glanz Jason M
Kaiser Permanente Colorado, Institute for Health Research, Denver, CO, USA.
Colorado School of Public Health, Anschutz Medical Campus, Department of Epidemiology, Denver, CO, USA.
Pharmacoepidemiol Drug Saf. 2018 Feb;27(2):221-228. doi: 10.1002/pds.4374. Epub 2018 Jan 2.
The Institute of Medicine recommended conducting observational studies of childhood immunization schedule safety. Such studies could be biased by outcome misclassification, leading to incorrect inferences. Using simulations, we evaluated (1) outcome positive predictive values (PPVs) as indicators of bias of an exposure-outcome association, and (2) quantitative bias analyses (QBA) for bias correction.
Simulations were conducted based on proposed or ongoing Vaccine Safety Datalink studies. We simulated 4 studies of 2 exposure groups (children with no vaccines or on alternative schedules) and 2 baseline outcome levels (100 and 1000/100 000 person-years), with 3 relative risk (RR) levels (RR = 0.50, 1.00, and 2.00), across 1000 replications using probabilistic modeling. We quantified bias from non-differential and differential outcome misclassification, based on levels previously measured in database research (sensitivity > 95%; specificity > 99%). We calculated median outcome PPVs, median observed RRs, Type 1 error, and bias-corrected RRs following QBA.
We observed PPVs from 34% to 98%. With non-differential misclassification and true RR = 2.00, median bias was toward the null, with severe bias (median observed RR = 1.33) with PPV = 34% and modest bias (median observed RR = 1.83) with PPV = 83%. With differential misclassification, PPVs did not reflect median bias, and there was Type 1 error of 100% with PPV = 90%. QBA was generally effective in correcting misclassification bias.
In immunization schedule studies, outcome misclassification may be non-differential or differential to exposure. Overall outcome PPVs do not reflect the distribution of false positives by exposure and are poor indicators of bias in individual studies. Our results support QBA for immunization schedule safety research.
医学研究所建议开展儿童免疫接种计划安全性的观察性研究。此类研究可能因结局错误分类而产生偏倚,从而导致错误的推断。我们通过模拟评估了:(1)结局阳性预测值(PPV)作为暴露-结局关联偏倚的指标;(2)用于偏倚校正的定量偏倚分析(QBA)。
基于已提议或正在进行的疫苗安全数据链研究进行模拟。我们模拟了4项研究,涉及2个暴露组(未接种疫苗或采用替代接种计划的儿童)和2个基线结局水平(100和1000/100 000人年),有3个相对危险度(RR)水平(RR = 0.50、1.00和2.00),使用概率模型进行1000次重复模拟。我们根据先前在数据库研究中测量的水平(灵敏度>95%;特异性>99%),对非差异性和差异性结局错误分类导致的偏倚进行了量化。我们计算了结局PPV的中位数、观察到的RR中位数、I型错误以及QBA后的偏倚校正RR。
我们观察到PPV在34%至98%之间。在非差异性错误分类且真实RR = 2.00时,中位数偏倚趋向于无效值,PPV = 34%时存在严重偏倚(观察到的RR中位数 = 1.33),PPV = 83%时存在适度偏倚(观察到的RR中位数 = 1.83)。在差异性错误分类时,PPV不能反映中位数偏倚,PPV = 9{0}%时I型错误为100%。QBA通常能有效校正错误分类偏倚。
在免疫接种计划研究中,结局错误分类可能与暴露无关或存在差异。总体结局PPV不能反映按暴露分类的假阳性分布情况,且在个体研究中是较差的偏倚指标。我们的结果支持将QBA用于免疫接种计划安全性研究。