Suppr超能文献

通过氧化石墨烯载体掺杂调节惰性MoS表面活性以实现化学功能化和析氢:一项密度泛函研究

Tuning the activity of the inert MoS surface via graphene oxide support doping towards chemical functionalization and hydrogen evolution: a density functional study.

作者信息

Tang Shaobin, Wu Weihua, Zhang Shiyong, Ye Dongnai, Zhong Ping, Li Xiaokang, Liu Liangxian, Li Ya-Fei

机构信息

Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China.

出版信息

Phys Chem Chem Phys. 2018 Jan 17;20(3):1861-1871. doi: 10.1039/c7cp06636h.

Abstract

The basal plane of MoS provides a promising platform for chemical functionalization and the hydrogen evolution reaction (HER); however, its practical utilization remains challenging due to the lack of active sites and its low conductivity. Herein, using first principles simulations, we first proposed a novel and effective strategy for significantly enhancing the activity of the inert MoS surface using a graphene oxide (GO) support (MoS/GOs). The chemical bonding of the functional groups (CH and NH) on the MoS-GO hybrid is stronger than that in freestanding MoS or MoS-graphene. Upon increasing the oxygen group concentration or introducing N heteroatoms into the GO support, the stability of the chemically functionalized MoS is improved. Furthermore, use of GOs to support pristine and defective MoS with a S vacancy (S-MoS) can greatly promote the HER activity of the basal plane. The catalytic activity of S-MoS is further enhanced by doping N into GOs; this results in a hydrogen adsorption free energy of almost zero (ΔG = ∼-0.014 eV). The coupling interaction with the GO substrate reduces the p-type Schottky barrier heights (SBH) of S-MoS and modifies its electronic properties, which facilitate charge transfer between them. Our calculated results are consistent with the experimental observations. Thus, the present results open new avenues for the chemical functionalization of MoS-based nanosheets and HER catalysts.

摘要

二硫化钼(MoS)的基面为化学功能化和析氢反应(HER)提供了一个有前景的平台;然而,由于缺乏活性位点及其低导电性,其实际应用仍然具有挑战性。在此,我们使用第一性原理模拟,首次提出了一种新颖且有效的策略,即利用氧化石墨烯(GO)载体(MoS/GOs)显著提高惰性MoS表面的活性。MoS-GO杂化物上官能团(CH和NH)的化学键比独立的MoS或MoS-石墨烯中的化学键更强。增加GO载体中的氧基团浓度或引入N杂原子后,化学功能化MoS的稳定性得到提高。此外,使用GO来支撑具有硫空位(S-MoS)的原始和缺陷MoS,可以极大地促进基面的HER活性。通过向GO中掺杂N进一步提高了S-MoS的催化活性;这导致氢吸附自由能几乎为零(ΔG = ∼-0.014 eV)。与GO基底的耦合相互作用降低了S-MoS的p型肖特基势垒高度(SBH)并改变了其电子性质,这有利于它们之间的电荷转移。我们的计算结果与实验观察结果一致。因此,目前的结果为基于MoS的纳米片的化学功能化和HER催化剂开辟了新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验