Department of Physics, University of Basel , 4056 Basel, Switzerland.
Laboratory of Semiconductor Materials, Institute of Materials (IMX), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne, Switzerland.
Nano Lett. 2018 Feb 14;18(2):964-970. doi: 10.1021/acs.nanolett.7b04386. Epub 2018 Jan 8.
We use a scanning nanometer-scale superconducting quantum interference device to map the stray magnetic field produced by individual ferromagnetic nanotubes (FNTs) as a function of applied magnetic field. The images are taken as each FNT is led through magnetic reversal and are compared with micromagnetic simulations, which correspond to specific magnetization configurations. In magnetic fields applied perpendicular to the FNT long axis, their magnetization appears to reverse through vortex states, that is, configurations with vortex end domains or in the case of a sufficiently short FNT with a single global vortex. Geometrical imperfections in the samples and the resulting distortion of idealized magnetization configurations influence the measured stray-field patterns.
我们使用扫描纳米级超导量子干涉仪来绘制单个铁磁纳米管(FNTs)在磁场作用下产生的杂散磁场。这些图像是在每个 FNT 通过磁反转时拍摄的,并与微磁模拟进行比较,微磁模拟对应于特定的磁化配置。在垂直于 FNT 长轴施加的磁场中,它们的磁化似乎通过涡旋状态反转,即具有涡旋端域的配置,或者在 FNT 足够短的情况下具有单个全局涡旋。样品中的几何缺陷以及由此产生的理想化磁化配置的变形会影响测量的杂散场模式。