IEEE Trans Biomed Circuits Syst. 2017 Dec;11(6):1470-1477. doi: 10.1109/TBCAS.2017.2759510.
In this paper, we further investigate the properties of off-stoichiometry thiol-ene polymers (OSTE) aiming its application in microchip electrophoresis for bioanalytical applications. The proportion of 1.3:1 (allyl:thiol) and 1:2.5 (allyl:thiol) presented the best results in terms of sealing. Raman imaging mapping of the polymers surfaces revealed an outstanding homogeneity. Water contact angle were measured as 68° ± 6° and 71° ± 5° for 1.3:1 allyl and 1:2.5 thiol, respectively. Substrates prepared with OSTE demonstrated to be less prone to sorption of nonpolar compounds. The electroosmotic flow measured for this OSTE composition was 3.8 ± 0.3·10 cm s V, 1.5 times higher than the one found for polydimethylsiloxane microchips under the same conditions. As a proof-of-concept for the applicability of OSTE microchips in bioanalysis the immobilization of α-amylase on the polymer surface and the implementation of a Saccharomyces cerevisiae cell counter using contactless conductivity detection are demonstrated.
在本文中,我们进一步研究了非化学计量硫醇-烯聚合物(OSTE)的性质,旨在将其应用于微芯片电泳中的生物分析应用。在密封方面,1.3:1(烯丙基:硫醇)和 1:2.5(烯丙基:硫醇)的比例表现最佳。聚合物表面的拉曼成像映射显示出出色的均一性。水接触角分别为 68°±6°和 71°±5°,适用于 1.3:1 烯丙基和 1:2.5 硫醇。用 OSTE 制备的基板显示出不易吸附非极性化合物的特性。对于这种 OSTE 组成,测量到的电渗流为 3.8±0.3·10 cm s V,比在相同条件下聚二甲基硅氧烷微芯片中发现的电渗流高 1.5 倍。作为 OSTE 微芯片在生物分析中适用性的概念验证,展示了在聚合物表面固定α-淀粉酶以及使用非接触式电导检测实现酿酒酵母细胞计数的应用。