Suppr超能文献

注释者间一致性与机器性能上限:来自生物医学自然语言处理的证据

Inter-Annotator Agreement and the Upper Limit on Machine Performance: Evidence from Biomedical Natural Language Processing.

作者信息

Boguslav Mayla, Cohen Kevin Bretonnel

机构信息

Computational Bioscience Program, University Colorado School of Medicine, Aurora, CO, USA.

出版信息

Stud Health Technol Inform. 2017;245:298-302.

Abstract

Human-annotated data is a fundamental part of natural language processing system development and evaluation. The quality of that data is typically assessed by calculating the agreement between the annotators. It is widely assumed that this agreement between annotators is the upper limit on system performance in natural language processing: if humans can't agree with each other about the classification more than some percentage of the time, we don't expect a computer to do any better. We trace the logical positivist roots of the motivation for measuring inter-annotator agreement, demonstrate the prevalence of the widely-held assumption about the relationship between inter-annotator agreement and system performance, and present data that suggest that inter-annotator agreement is not, in fact, an upper bound on language processing system performance.

摘要

人工标注的数据是自然语言处理系统开发和评估的基本组成部分。该数据的质量通常通过计算标注者之间的一致性来评估。人们普遍认为,标注者之间的这种一致性是自然语言处理系统性能的上限:如果人类在超过一定百分比的时间内不能就分类达成一致,我们就不期望计算机能做得更好。我们追溯了测量标注者间一致性动机的逻辑实证主义根源,证明了关于标注者间一致性与系统性能关系的广泛假设的普遍性,并给出数据表明,事实上,标注者间一致性并非语言处理系统性能的上限。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验