Halimi Abdelghafour, Batatia Hadj, Le Digabel Jimmy, Josse Gwendal, Tourneret Jean Yves
University of Toulouse, IRIT-INPT, 2 rue Camichel, BP 7122, 31071 Toulouse cedex 7, France.
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, 2 rue Viguerie, 31025 Toulouse Cedex 3, France.
Biomed Opt Express. 2017 Nov 8;8(12):5450-5467. doi: 10.1364/BOE.8.005450. eCollection 2017 Dec 1.
Detecting skin lentigo in reflectance confocal microscopy images is an important and challenging problem. This imaging modality has not yet been widely investigated for this problem and there are a few automatic processing techniques. They are mostly based on machine learning approaches and rely on numerous classical image features that lead to high computational costs given the very large resolution of these images. This paper presents a detection method with very low computational complexity that is able to identify the skin depth at which the lentigo can be detected. The proposed method performs multiresolution decomposition of the image obtained at each skin depth. The distribution of image pixels at a given depth can be approximated accurately by a generalized Gaussian distribution whose parameters depend on the decomposition scale, resulting in a very-low-dimension parameter space. SVM classifiers are then investigated to classify the scale parameter of this distribution allowing real-time detection of lentigo. The method is applied to 45 healthy and lentigo patients from a clinical study, where sensitivity of 81.4% and specificity of 83.3% are achieved. Our results show that lentigo is identifiable at depths between 50 and 60, corresponding to the average location of the the dermoepidermal junction. This result is in agreement with the clinical practices that characterize the lentigo by assessing the disorganization of the dermoepidermal junction.
在反射式共聚焦显微镜图像中检测皮肤雀斑是一个重要且具有挑战性的问题。对于这个问题,这种成像方式尚未得到广泛研究,并且自动处理技术也较少。它们大多基于机器学习方法,依赖众多经典图像特征,鉴于这些图像的超高分辨率,这会导致很高的计算成本。本文提出了一种计算复杂度极低的检测方法,该方法能够识别出可检测到雀斑的皮肤深度。所提出的方法对在每个皮肤深度获取的图像进行多分辨率分解。给定深度处图像像素的分布可以通过广义高斯分布精确近似,其参数取决于分解尺度,从而得到一个维度非常低的参数空间。然后研究支持向量机分类器对该分布的尺度参数进行分类,以实现雀斑的实时检测。该方法应用于一项临床研究中的45名健康人和雀斑患者,实现了81.4%的灵敏度和83.3%的特异性。我们的结果表明,雀斑在50至60的深度范围内可识别,这对应于真皮表皮交界处的平均位置。这一结果与通过评估真皮表皮交界处的紊乱来表征雀斑的临床实践一致。