Suppr超能文献

全球抗菌药物耐药性监测系统(GLASS)在菌血症患者中的实施情况。

Implementation of global antimicrobial resistance surveillance system (GLASS) in patients with bacteremia.

作者信息

Sirijatuphat Rujipas, Sripanidkulchai Kantarida, Boonyasiri Adhiratha, Rattanaumpawan Pinyo, Supapueng Orawan, Kiratisin Pattarachai, Thamlikitkul Visanu

机构信息

Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

出版信息

PLoS One. 2018 Jan 3;13(1):e0190132. doi: 10.1371/journal.pone.0190132. eCollection 2018.

Abstract

The global antimicrobial resistance surveillance system (GLASS) was launched by the World Health Organization (WHO) in 2015. GLASS is a surveillance system for clinical specimens that are sent to microbiology laboratory for clinical purposes. The unique feature of GLASS is that clinical data is combined with microbiological data, and deduplication of the microbiological results is performed. The objective of the study was to determine feasibility and benefit of GLASS for surveillance of blood culture specimens. GLASS was implemented at Siriraj Hospital in Bangkok, Thailand using a locally developed web application program (app) to transfer blood culture specimen data, and to enter clinical data of patients with positive blood culture by infection control nurses and physicians via the app installed in their smart phones. The rate of positive blood culture specimens with true infection was 15.2%. Escherichia coli was the most common cause of bacteremia. Secondary bacteremia, primary bacteremia, and central line-associated blood stream infection was observed in 61.8%, 30.6%, and 12.6% of cases, respectively. Sepsis was observed in 56.9% of patients. E.coli was significantly more common in community-acquired bacteremia, whereas Klebsiella pneumoniae, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and Acinetobacter baumannii were significantly more common in hospital-acquired bacteremia. Hospital-acquired isolates of E.coli, K.pneumoniae, A.baumannii, P.aeruginosa, S.aureus and Enterococcus faecium were more resistant to antibiotics than community-acquired isolates. In-hospital mortality was significantly higher in patients with antibiotic-resistant bacteremia than in patients with antibiotic non-resistant bacteremia (40.5% vs. 28.5%, p<0.001). The patients with antibiotic-resistant bacteremia consumed more resources than those with antibiotic non-resistant bacteremia. Blood culture results combined with patient clinical data were shown to have more benefit for surveillance of antimicrobial resistance, and to be more applicable for developing local antibiotic treatment guidelines for patients suspected of having bacteremia. However, GLASS consumed more time and more resources than the conventional laboratory-based surveillance system.

摘要

全球抗菌药物耐药性监测系统(GLASS)于2015年由世界卫生组织(WHO)发起。GLASS是一个针对送往微生物实验室用于临床目的的临床标本的监测系统。GLASS的独特之处在于将临床数据与微生物数据相结合,并对微生物学结果进行重复数据删除。该研究的目的是确定GLASS用于监测血培养标本的可行性和益处。在泰国曼谷的诗里拉吉医院实施了GLASS,使用当地开发的网络应用程序(应用程序)传输血培养标本数据,并由感染控制护士和医生通过安装在他们智能手机中的应用程序输入血培养阳性患者的临床数据。真正感染的血培养标本阳性率为15.2%。大肠杆菌是菌血症最常见的病因。分别在61.8%、30.6%和12.6%的病例中观察到继发性菌血症、原发性菌血症和中心静脉导管相关血流感染。56.9%的患者出现脓毒症。大肠杆菌在社区获得性菌血症中明显更为常见,而肺炎克雷伯菌、铜绿假单胞菌、耐甲氧西林金黄色葡萄球菌和鲍曼不动杆菌在医院获得性菌血症中明显更为常见。医院获得性大肠杆菌、肺炎克雷伯菌、鲍曼不动杆菌、铜绿假单胞菌、金黄色葡萄球菌和粪肠球菌分离株比社区获得性分离株对抗生素的耐药性更强。抗生素耐药菌血症患者的院内死亡率明显高于抗生素非耐药菌血症患者(40.5%对28.5%,p<0.001)。抗生素耐药菌血症患者比抗生素非耐药菌血症患者消耗更多资源。血培养结果与患者临床数据相结合显示,对抗菌药物耐药性监测更有益,并且更适用于为疑似菌血症患者制定当地抗生素治疗指南。然而,与传统的基于实验室的监测系统相比,GLASS消耗的时间和资源更多。

相似文献

1
Implementation of global antimicrobial resistance surveillance system (GLASS) in patients with bacteremia.
PLoS One. 2018 Jan 3;13(1):e0190132. doi: 10.1371/journal.pone.0190132. eCollection 2018.
3
Implementation of global antimicrobial resistance surveillance system (GLASS) in patients with bacteriuria.
J Glob Antimicrob Resist. 2020 Mar;20:60-67. doi: 10.1016/j.jgar.2019.11.009. Epub 2019 Nov 18.
5
[Microbiological profiles of pathogens causing nosocomial bacteremia in 2011, 2013 and 2016].
Sheng Wu Gong Cheng Xue Bao. 2018 Aug 25;34(8):1205-1217. doi: 10.13345/j.cjb.180192.
6
[Analysis of the pathogenic characteristics of 162 severely burned patients with bloodstream infection].
Zhonghua Shao Shang Za Zhi. 2016 Sep 20;32(9):529-35. doi: 10.3760/cma.j.issn.1009-2587.2016.09.004.
8
Patterns of Drug-Resistant Bacteria in a General Hospital, China, 2011-2016.
Pol J Microbiol. 2019;68(2):225-232. doi: 10.33073/pjm-2019-024.
9
Bacterial susceptibility in bloodstream infections: Results from China Antimicrobial Resistance Surveillance Trial (CARST) Program, 2015-2016.
J Glob Antimicrob Resist. 2019 Jun;17:276-282. doi: 10.1016/j.jgar.2018.12.016. Epub 2019 Jan 3.

引用本文的文献

1
activity of sulbactam in combination with other antimicrobial agents against extensively drug-resistant .
Microbiol Spectr. 2025 Sep 2;13(9):e0137925. doi: 10.1128/spectrum.01379-25. Epub 2025 Aug 12.
2
Prevalence and risk factors of infection in Pediatric Intensive Care Unit at Thammasat University Hospital.
F1000Res. 2025 May 20;13:1269. doi: 10.12688/f1000research.157612.3. eCollection 2024.
3
Optimizing Antibiotic Use: Addressing Resistance Through Effective Strategies and Health Policies.
Antibiotics (Basel). 2024 Nov 21;13(12):1112. doi: 10.3390/antibiotics13121112.
5
Impact of Antimicrobial Stewardship on Reducing Antimicrobial Resistance.
Cureus. 2023 Dec 4;15(12):e49935. doi: 10.7759/cureus.49935. eCollection 2023 Dec.
7
Antibiotic point prevalence survey and antimicrobial resistance in hospitalized patients across Peruvian reference hospitals.
J Infect Public Health. 2023 Dec;16 Suppl 1:52-60. doi: 10.1016/j.jiph.2023.10.030. Epub 2023 Oct 31.
8
Trends in antimicrobial resistance of species in Peru, 2011-2020.
JAC Antimicrob Resist. 2023 Oct 26;5(5):dlad110. doi: 10.1093/jacamr/dlad110. eCollection 2023 Oct.
9
National action plans for antimicrobial resistance and variations in surveillance data platforms.
Bull World Health Organ. 2023 Aug 1;101(8):501-512F. doi: 10.2471/BLT.22.289403. Epub 2023 May 29.

本文引用的文献

1
Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae.
Ann Clin Microbiol Antimicrob. 2017 Mar 29;16(1):18. doi: 10.1186/s12941-017-0191-3.
4
The World Health Organization Global Action Plan for antimicrobial resistance.
S Afr Med J. 2015 Apr 6;105(5):325. doi: 10.7196/samj.9644.
6
Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: systematic review and meta-analysis.
Clin Microbiol Infect. 2014 May;20(5):416-23. doi: 10.1111/1469-0691.12363. Epub 2013 Oct 17.
7
Health-care associated infections in Thailand 2011.
J Med Assoc Thai. 2013 Feb;96 Suppl 2:S117-23.
9
Communicating trends in resistance using a drug resistance index.
BMJ Open. 2011 Nov 14;1(2):e000135. doi: 10.1136/bmjopen-2011-000135. Print 2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验