1 Department of Biostatistics & Epidemiology, University of Pennsylvania, Philadelphia, PA, USA.
2 Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Stat Methods Med Res. 2018 Oct;27(10):3126-3138. doi: 10.1177/0962280217693262. Epub 2017 Feb 27.
Estimation of common cost-effectiveness measures, including the incremental cost-effectiveness ratio and the net monetary benefit, is complicated by the need to account for informative censoring and inherent skewness of the data. In addition, since the two components of these measures, medical costs and survival are often collected from observational claims data, one must account for potential confounders. We propose a novel doubly robust, unbiased estimator for cost-effectiveness based on propensity scores that allow the incorporation of cost history and time-varying covariates. Further, we use an ensemble machine learning approach to obtain improved predictions from parametric and non-parametric cost and propensity score models. Our simulation studies demonstrate that the proposed doubly robust approach performs well even under mis-specification of either the propensity score model or the outcome model. We apply our approach to a cost-effectiveness analysis of two competing lung cancer surveillance procedures, CT vs. chest X-ray, using SEER-Medicare data.
常见的成本效益衡量指标的估计,包括增量成本效益比和净货币收益,由于需要考虑信息性删失和数据的固有偏态,因此变得复杂。此外,由于这些衡量指标的两个组成部分,医疗成本和生存,通常是从观察性索赔数据中收集的,因此必须考虑潜在的混杂因素。我们提出了一种新的基于倾向得分的双重稳健、无偏成本效益估计量,该方法允许包含成本历史和时变协变量。此外,我们使用集成机器学习方法从参数和非参数成本和倾向得分模型中获得改进的预测。我们的模拟研究表明,即使在倾向得分模型或结果模型存在误设定的情况下,所提出的双重稳健方法也能很好地发挥作用。我们使用 SEER-医疗保险数据,将我们的方法应用于两种竞争性肺癌监测程序(CT 与 X 光)的成本效益分析。