Suppr超能文献

从成本效益角度估计最佳个体化治疗规则。

Estimating the optimal individualized treatment rule from a cost-effectiveness perspective.

机构信息

Department of Population Health Sciences, University of Utah, Salt Lake City, Utah.

Department of Internal Medicine, University of Utah, Salt Lake City, Utah.

出版信息

Biometrics. 2022 Mar;78(1):337-351. doi: 10.1111/biom.13406. Epub 2020 Dec 9.

Abstract

Optimal individualized treatment rules (ITRs) provide customized treatment recommendations based on subject characteristics to maximize clinical benefit in accordance with the objectives in precision medicine. As a result, there is growing interest in developing statistical tools for estimating optimal ITRs in evidence-based research. In health economic perspectives, policy makers consider the tradeoff between health gains and incremental costs of interventions to set priorities and allocate resources. However, most work on ITRs has focused on maximizing the effectiveness of treatment without considering costs. In this paper, we jointly consider the impact of effectiveness and cost on treatment decisions and define ITRs under a composite-outcome setting, so that we identify the most cost-effective ITR that accounts for individual-level heterogeneity through direct optimization. In particular, we propose a decision-tree-based statistical learning algorithm that uses a net-monetary-benefit-based reward to provide nonparametric estimations of the optimal ITR. We provide several approaches to estimating the reward underlying the ITR as a function of subject characteristics. We present the strengths and weaknesses of each approach and provide practical guidelines by comparing their performance in simulation studies. We illustrate the top-performing approach from our simulations by evaluating the projected 15-year personalized cost-effectiveness of the intensive blood pressure control of the Systolic Blood Pressure Intervention Trial (SPRINT) study.

摘要

最优个体化治疗规则 (ITR) 根据受试者特征提供定制化的治疗建议,以最大限度地提高精准医学目标下的临床获益。因此,人们越来越感兴趣于开发用于在循证研究中估计最优 ITR 的统计工具。在卫生经济视角下,政策制定者考虑干预措施的健康收益与增量成本之间的权衡,以确定优先级并分配资源。然而,大多数 ITR 工作都侧重于在不考虑成本的情况下最大化治疗效果。在本文中,我们共同考虑了效果和成本对治疗决策的影响,并在复合结局设定下定义了 ITR,以便通过直接优化来确定考虑个体异质性的最具成本效益的 ITR。具体来说,我们提出了一种基于决策树的统计学习算法,该算法使用基于净货币收益的奖励来提供最优 ITR 的非参数估计。我们提出了几种方法来估计作为受试者特征函数的 ITR 下的奖励。我们比较了每种方法的性能,展示了它们的优缺点,并提供了实用指南。我们通过评估强化降压治疗的收缩压干预试验 (SPRINT) 研究的 15 年个性化成本效益预测,展示了我们模拟中表现最佳的方法。

相似文献

1
Estimating the optimal individualized treatment rule from a cost-effectiveness perspective.
Biometrics. 2022 Mar;78(1):337-351. doi: 10.1111/biom.13406. Epub 2020 Dec 9.
2
An efficient approach for optimizing the cost-effective individualized treatment rule using conditional random forest.
Stat Methods Med Res. 2022 Nov;31(11):2122-2136. doi: 10.1177/09622802221115876. Epub 2022 Aug 1.
3
Estimating individualized treatment rules with risk constraint.
Biometrics. 2020 Dec;76(4):1310-1318. doi: 10.1111/biom.13232. Epub 2020 Feb 18.
4
Tree-based Ensemble Methods For Individualized Treatment Rules.
Biostat Epidemiol. 2017;2(1):61-83. doi: 10.1080/24709360.2018.1435608. Epub 2018 Mar 28.
5
A Bayesian multivariate hierarchical model for developing a treatment benefit index using mixed types of outcomes.
BMC Med Res Methodol. 2024 Sep 27;24(1):218. doi: 10.1186/s12874-024-02333-z.
6
Estimating individualized treatment regimes from crossover designs.
Biometrics. 2020 Sep;76(3):778-788. doi: 10.1111/biom.13186. Epub 2019 Dec 19.
7
Robust outcome weighted learning for optimal individualized treatment rules.
J Biopharm Stat. 2019;29(4):606-624. doi: 10.1080/10543406.2019.1633657. Epub 2019 Jul 16.
8
Composite interaction tree for simultaneous learning of optimal individualized treatment rules and subgroups.
Stat Med. 2019 Jun 30;38(14):2632-2651. doi: 10.1002/sim.8105. Epub 2019 Mar 19.
9
Do machine learning methods lead to similar individualized treatment rules? A comparison study on real data.
Stat Med. 2024 May 20;43(11):2043-2061. doi: 10.1002/sim.10059. Epub 2024 Mar 12.
10
Multi-Armed Angle-Based Direct Learning for Estimating Optimal Individualized Treatment Rules With Various Outcomes.
J Am Stat Assoc. 2020;115(530):678-691. doi: 10.1080/01621459.2018.1529597. Epub 2019 Apr 11.

引用本文的文献

本文引用的文献

2
An Educational Review About Using Cost Data for the Purpose of Cost-Effectiveness Analysis.
Pharmacoeconomics. 2019 May;37(5):631-643. doi: 10.1007/s40273-019-00771-y.
4
Augmented outcome-weighted learning for estimating optimal dynamic treatment regimens.
Stat Med. 2018 Nov 20;37(26):3776-3788. doi: 10.1002/sim.7844. Epub 2018 Jun 5.
6
Estimating individualized treatment rules for ordinal treatments.
Biometrics. 2018 Sep;74(3):924-933. doi: 10.1111/biom.12865. Epub 2018 Mar 13.
7
Tree based weighted learning for estimating individualized treatment rules with censored data.
Electron J Stat. 2017;11(2):3927-3953. doi: 10.1214/17-EJS1305. Epub 2017 Oct 18.
8
A doubly robust approach for cost-effectiveness estimation from observational data.
Stat Methods Med Res. 2018 Oct;27(10):3126-3138. doi: 10.1177/0962280217693262. Epub 2017 Feb 27.
9
Benefit and harm of intensive blood pressure treatment: Derivation and validation of risk models using data from the SPRINT and ACCORD trials.
PLoS Med. 2017 Oct 17;14(10):e1002410. doi: 10.1371/journal.pmed.1002410. eCollection 2017 Oct.
10
Residual Weighted Learning for Estimating Individualized Treatment Rules.
J Am Stat Assoc. 2017;112(517):169-187. doi: 10.1080/01621459.2015.1093947. Epub 2017 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验