Suppr超能文献

比较组间基线特征:CBCgrps 软件包介绍

Comparing baseline characteristics between groups: an introduction to the CBCgrps package.

作者信息

Zhang Zhongheng, Gayle Alberto Alexander, Wang Juan, Zhang Haoyang, Cardinal-Fernández Pablo

机构信息

Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.

Department of Immunology, Mie University Graduate School of Medicine, Mie, Japan.

出版信息

Ann Transl Med. 2017 Dec;5(24):484. doi: 10.21037/atm.2017.09.39.

Abstract

A usual practice in observational studies is the comparison of baseline characteristics of participants between study groups. The overall population can be grouped by clinical outcome or exposure status. A combined table reporting baseline characteristics is usually displayed, for the overall population and then separately for each group. The last column usually gives the P value for the comparison between study groups. In the conventional research model, the variables for which data are collected are limited in number. It is thus feasible to calculate descriptive data one by one and to manually create the table. The availability of EHR and big data mining techniques makes it possible to explore a far larger number of variables. However, manual tabulation of big data is particularly error prone; it is exceedingly time-consuming to create and revise such tables manually. In this paper, we introduce an R package called CBCgrps, which is designed to automate and streamline the generation of such tables when working with big data. The package contains two functions, twogrps() and multigrps(), which are used for comparisons between two and multiple groups, respectively.

摘要

观察性研究中的一个常见做法是比较研究组之间参与者的基线特征。总体人群可以按临床结局或暴露状态进行分组。通常会展示一个合并表格,报告总体人群以及每个组各自的基线特征。最后一列通常给出研究组之间比较的P值。在传统研究模型中,收集数据的变量数量有限。因此,逐一计算描述性数据并手动创建表格是可行的。电子健康记录(EHR)和大数据挖掘技术的出现使得探索大量变量成为可能。然而,大数据的手动制表特别容易出错;手动创建和修订此类表格极其耗时。在本文中,我们介绍了一个名为CBCgrps的R包,它旨在在处理大数据时自动且简化此类表格的生成。该包包含两个函数,twogrps()和multigrps(),分别用于两组和多组之间的比较。

相似文献

2
3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
6
8
10

引用本文的文献

本文引用的文献

1
Big data opens a window onto wellness.大数据为健康开启了一扇窗。
Nat Biotechnol. 2017 Aug 8;35(8):720-721. doi: 10.1038/nbt.3934.
2
-Omic and Electronic Health Record Big Data Analytics for Precision Medicine.用于精准医学的组学与电子健康记录大数据分析
IEEE Trans Biomed Eng. 2017 Feb;64(2):263-273. doi: 10.1109/TBME.2016.2573285. Epub 2016 Oct 10.
5
Independent filtering increases detection power for high-throughput experiments.独立过滤提高了高通量实验的检测能力。
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9546-51. doi: 10.1073/pnas.0914005107. Epub 2010 May 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验