Suppr超能文献

基于碳点封装的可破有机硅纳米胶囊作为标记物的用于单细胞水平下致病性细菌检测的荧光免疫分析

Fluorescent Immunoassay for the Detection of Pathogenic Bacteria at the Single-Cell Level Using Carbon Dots-Encapsulated Breakable Organosilica Nanocapsule as Labels.

机构信息

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China.

出版信息

ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3441-3448. doi: 10.1021/acsami.7b18714. Epub 2018 Jan 16.

Abstract

Herein, carbon dots (CDs)-encapsulated breakable organosilica nanocapsules (BONs) were facilely prepared and used as advanced fluorescent labels for ultrasensitive detection of Staphylococcus aureus. The CDs were entrapped in organosilica shells by cohydrolyzation of tetraethyl orthosilicate and bis[3-(triethoxysilyl)propyl]disulfide to form core-shell CDs@BONs, where hundreds of CDs were encapsulated in each nanocapsule. Immunofluorescent nanocapsules, i.e., anti-S. aureus antibody-conjugated CDs@BONs, were prepared to specifically recognize S. aureus. Before fluorescent detection, CDs were released from the BONs by simple NaBH reduction. The fluorescent signals were amplified by 2 orders of magnitude because of hundreds of CDs encapsulated in each nanocapsule, compared with a conventional immunoassay using CDs as fluorescent labels. A linear range was obtained at the S. aureus concentration from 1 to 200 CFU mL. CDs@BONs are also expected to expand to other systems and allow the detection of ultralow concentrations of targets.

摘要

在此,我们制备了碳点(CDs)封装的可断裂有机硅纳米胶囊(BONs),并将其用作超灵敏检测金黄色葡萄球菌的先进荧光标记物。通过正硅酸乙酯和双[3-(三乙氧基硅基)丙基]二硫化物的共水解,将 CDs 封装在有机硅壳中,形成核壳结构的 CDs@BONs,每个纳米胶囊中封装了数百个 CDs。制备了免疫荧光纳米胶囊,即抗金黄色葡萄球菌抗体偶联的 CDs@BONs,以特异性识别金黄色葡萄球菌。在荧光检测之前,通过简单的 NaBH 还原从 BONs 中释放出 CDs。与使用 CDs 作为荧光标记的常规免疫测定相比,由于每个纳米胶囊中封装了数百个 CDs,荧光信号被放大了 2 个数量级。在金黄色葡萄球菌浓度为 1 到 200 CFU mL 的范围内获得了线性范围。我们预计 CDs@BONs 将扩展到其他系统,并允许检测超低浓度的靶标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验