Suppr超能文献

气体分子在锰酞菁分子器件上的吸附及其作为气体传感器的可能性。

Adsorption of gas molecules on a manganese phthalocyanine molecular device and its possibility as a gas sensor.

作者信息

Zou Dongqing, Zhao Wenkai, Cui Bin, Li Dongmei, Liu Desheng

机构信息

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China.

出版信息

Phys Chem Chem Phys. 2018 Jan 17;20(3):2048-2056. doi: 10.1039/c7cp06760g.

Abstract

A theoretical investigation of the gas detection performance of manganese(ii) phthalocyanine (MnPc) molecular junctions for six different gases (NO, CO, O, CO, NO, and NH) is executed through a non-equilibrium Green's function technique in combination with spin density functional theory. Herein, we systematically studied the adsorption structural configurations, the adsorption energy, the charge transfer, and the spin transport properties of the MnPc molecular junctions with these gas adsorbates. Remarkably, NO adsorption can achieve an off-state of the Mn spin; this may be an effective measure to switch the molecular spin. In addition, our results indicate that by measuring spin filter efficiency and the changes in total current through the molecular junctions, the CO, NO, O, and NO gas molecules can be detected selectively. However, the CO and NH gas adsorptions are difficult to be detected due to weak van der Waals interaction between these two gases and central Mn atom. Our findings provide important clues to the application of nanosensors for highly sensitive and selective based on MnPc molecular junction systems.

摘要

通过非平衡格林函数技术结合自旋密度泛函理论,对锰(II)酞菁(MnPc)分子结针对六种不同气体(NO、CO、O₂、CO₂、NO₂和NH₃)的气体检测性能进行了理论研究。在此,我们系统地研究了含有这些气体吸附质的MnPc分子结的吸附结构构型、吸附能、电荷转移和自旋输运性质。值得注意的是,NO吸附可以实现Mn自旋的关态;这可能是切换分子自旋的有效措施。此外,我们的结果表明,通过测量自旋过滤效率和通过分子结的总电流变化,可以选择性地检测CO、NO、O₂和NO₂气体分子。然而,由于这两种气体与中心Mn原子之间的范德华相互作用较弱,CO₂和NH₃气体吸附难以被检测到。我们的研究结果为基于MnPc分子结系统的高灵敏度和选择性纳米传感器的应用提供了重要线索。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验