Suppr超能文献

关于具有固定权重的单层前馈神经网络的逼近。

On the approximation by single hidden layer feedforward neural networks with fixed weights.

机构信息

Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, 9 B. Vahabzadeh str., AZ1141, Baku, Azerbaijan.

出版信息

Neural Netw. 2018 Feb;98:296-304. doi: 10.1016/j.neunet.2017.12.007. Epub 2017 Dec 18.

Abstract

Single hidden layer feedforward neural networks (SLFNs) with fixed weights possess the universal approximation property provided that approximated functions are univariate. But this phenomenon does not lay any restrictions on the number of neurons in the hidden layer. The more this number, the more the probability of the considered network to give precise results. In this note, we constructively prove that SLFNs with the fixed weight 1 and two neurons in the hidden layer can approximate any continuous function on a compact subset of the real line. The proof is implemented by a step by step construction of a universal sigmoidal activation function. This function has nice properties such as computability, smoothness and weak monotonicity. The applicability of the obtained result is demonstrated in various numerical examples. Finally, we show that SLFNs with fixed weights cannot approximate all continuous multivariate functions.

摘要

具有固定权重的单隐藏层前馈神经网络(SLFN)在被逼近函数为单变量的情况下具有通用逼近性质。但这一现象并没有对隐藏层中的神经元数量施加任何限制。这个数量越多,所考虑的网络给出精确结果的概率就越大。在本说明中,我们通过构造性证明了具有固定权重 1 和隐藏层中两个神经元的 SLFN 可以逼近实数线上紧子集上的任何连续函数。证明是通过逐步构造通用的 sigmoidal 激活函数来实现的。该函数具有可计算性、平滑性和弱单调性等良好性质。所得到的结果的适用性在各种数值示例中得到了证明。最后,我们表明具有固定权重的 SLFN 不能逼近所有连续的多元函数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验