Suppr超能文献

大脑扩散峰度的累积量展开与q空间成像估计的比较

Comparison of cumulant expansion and q-space imaging estimates for diffusional kurtosis in brain.

作者信息

Mohanty Vaibhav, McKinnon Emilie T, Helpern Joseph A, Jensen Jens H

机构信息

Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.

Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA.

出版信息

Magn Reson Imaging. 2018 May;48:80-88. doi: 10.1016/j.mri.2017.12.030. Epub 2018 Jan 3.

Abstract

PURPOSE

To compare estimates for the diffusional kurtosis in brain as obtained from a cumulant expansion (CE) of the diffusion MRI (dMRI) signal and from q-space (QS) imaging.

THEORY AND METHODS

For the CE estimates of the kurtosis, the CE was truncated to quadratic order in the b-value and fit to the dMRI signal for b-values from 0 up to 2000s/mm. For the QS estimates, b-values ranging from 0 up to 10,000s/mm were used to determine the diffusion displacement probability density function (dPDF) via Stejskal's formula. The kurtosis was then calculated directly from the second and fourth order moments of the dPDF. These two approximations were studied for in vivo human data obtained on a 3T MRI scanner using three orthogonal diffusion encoding directions.

RESULTS

The whole brain mean values for the CE and QS kurtosis estimates differed by 16% or less in each of the considered diffusion encoding directions, and the Pearson correlation coefficients all exceeded 0.85. Nonetheless, there were large discrepancies in many voxels, particularly those with either very high or very low kurtoses relative to the mean values.

CONCLUSION

Estimates of the diffusional kurtosis in brain obtained using CE and QS approximations are strongly correlated, suggesting that they encode similar information. However, for the choice of b-values employed here, there may be substantial differences, depending on the properties of the diffusion microenvironment in each voxel.

摘要

目的

比较通过扩散磁共振成像(dMRI)信号的累积量展开(CE)和q空间(QS)成像获得的脑内扩散峰度估计值。

理论与方法

对于峰度的CE估计,在b值中把CE截断到二次项,并对b值从0到2000 s/mm的dMRI信号进行拟合。对于QS估计,使用范围从0到10,000 s/mm的b值,通过斯泰卡尔公式确定扩散位移概率密度函数(dPDF)。然后直接从dPDF的二阶和四阶矩计算峰度。使用三个正交扩散编码方向,对在3T磁共振成像扫描仪上获得的体内人体数据研究了这两种近似方法。

结果

在每个考虑的扩散编码方向上,CE和QS峰度估计的全脑平均值相差16%或更少,并且皮尔逊相关系数均超过0.85。尽管如此,在许多体素中存在很大差异,特别是那些相对于平均值具有非常高或非常低峰度的体素。

结论

使用CE和QS近似获得的脑内扩散峰度估计值高度相关,表明它们编码相似的信息。然而,对于此处采用的b值选择,可能存在实质性差异,这取决于每个体素中扩散微环境的特性。

相似文献

1
Comparison of cumulant expansion and q-space imaging estimates for diffusional kurtosis in brain.
Magn Reson Imaging. 2018 May;48:80-88. doi: 10.1016/j.mri.2017.12.030. Epub 2018 Jan 3.
2
Stejskal's formula for multiple-pulsed diffusion MRI.
Magn Reson Imaging. 2015 Nov;33(9):1182-1186. doi: 10.1016/j.mri.2015.07.001. Epub 2015 Jul 26.
3
Double-pulsed diffusional kurtosis imaging.
NMR Biomed. 2014 Apr;27(4):363-70. doi: 10.1002/nbm.3030.
4
A simple noise correction scheme for diffusional kurtosis imaging.
Magn Reson Imaging. 2015 Jan;33(1):124-33. doi: 10.1016/j.mri.2014.08.028. Epub 2014 Aug 28.
5
Estimating diffusion propagator and its moments using directional radial basis functions.
IEEE Trans Med Imaging. 2015 Oct;34(10):2058-78. doi: 10.1109/TMI.2015.2418674. Epub 2015 Mar 31.
6
In vivo microscopic diffusional kurtosis imaging with symmetrized double diffusion encoding EPI.
Magn Reson Med. 2019 Jan;81(1):533-541. doi: 10.1002/mrm.27419. Epub 2018 Sep 9.
8
On the use of trace-weighted images in body diffusional kurtosis imaging.
Magn Reson Imaging. 2016 May;34(4):502-7. doi: 10.1016/j.mri.2015.12.013. Epub 2015 Dec 17.
10

本文引用的文献

1
Precision and accuracy of diffusion kurtosis estimation and the influence of b-value selection.
NMR Biomed. 2017 Nov;30(11). doi: 10.1002/nbm.3777. Epub 2017 Aug 25.
2
Fundamentals of diffusion MRI physics.
NMR Biomed. 2017 Mar;30(3). doi: 10.1002/nbm.3602.
3
Analysis of the effects of noise, DWI sampling, and value of assumed parameters in diffusion MRI models.
Magn Reson Med. 2017 Nov;78(5):1767-1780. doi: 10.1002/mrm.26575. Epub 2017 Jan 16.
4
Parameter Estimation Error Dependency on the Acquisition Protocol in Diffusion Kurtosis Imaging.
Appl Magn Reson. 2016;47(11):1229-1238. doi: 10.1007/s00723-016-0829-x. Epub 2016 Sep 17.
5
Diffusion kurtosis metrics as biomarkers of microstructural development: A comparative study of a group of children and a group of adults.
Neuroimage. 2017 Jan 1;144(Pt A):12-22. doi: 10.1016/j.neuroimage.2016.08.033. Epub 2016 Sep 14.
6
Comparison of Diffusion Metrics Obtained at 1.5T and 3T in Human Brain With Diffusional Kurtosis Imaging.
J Magn Reson Imaging. 2017 Mar;45(3):673-680. doi: 10.1002/jmri.25380. Epub 2016 Jul 12.
8
Application of q-Space Diffusion MRI for the Visualization of White Matter.
J Neurosci. 2016 Mar 2;36(9):2796-808. doi: 10.1523/JNEUROSCI.1770-15.2016.
9
Gibbs-ringing artifact removal based on local subvoxel-shifts.
Magn Reson Med. 2016 Nov;76(5):1574-1581. doi: 10.1002/mrm.26054. Epub 2015 Nov 24.
10
Diffusion MRI noise mapping using random matrix theory.
Magn Reson Med. 2016 Nov;76(5):1582-1593. doi: 10.1002/mrm.26059. Epub 2015 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验