Suppr超能文献

一种用于比较大型卡车碰撞致因研究和自然驾驶数据的综合方法。

A synthetic approach to compare the large truck crash causation study and naturalistic driving data.

机构信息

Virginia Tech Transportation Institute, United States.

Virginia Tech Transportation Institute, United States.

出版信息

Accid Anal Prev. 2018 Mar;112:11-14. doi: 10.1016/j.aap.2017.12.006.

Abstract

Truck crashes represent a significant problem on our nation's highways. There is a great opportunity to learn about crash causation by analyzing and comparing the Large Truck Crash Causation Study (LTCCS) and naturalistic driving (ND) data. These data sets provide in-depth information, but have contrasting strengths and weaknesses. The LTCCS contains information on high-severity crashes (crashes and fatal crashes), but relied on data collected during crash investigations. The LTCCS identified principal driver errors in the crash, such as the Critical Reason, but not detailed behaviors or scenario sequences. The ND data sets relate primarily to non-crashes that are detectable from dynamic vehicle events, such as hard braking, swerve, etc., provide direct video observations of the driver and the surrounding driving scene and precise information on driver inputs (kinematics) and captured events, and provide certain types of exposure data that cannot easily be obtained using crash reconstruction data. The ND data are collected continuously, thereby capturing both safety-critical events and normative driving (i.e., baseline). The current project evaluated large-truck crash data from the LTCCS and two large-truck ND data sets, the Naturalistic Truck Driving Study and the Drowsy Driver Warning System Field Operational Test. A synthetic risk ratio analysis on the associated factor, Following Too Closely, indicated that truck drivers in the LTCCS were 1.34 times more likely to be involved in a crash, than an ND crash-relevant conflict, if they were following too closely (i.e., tailgating). Given several caveats noted in the paper, this study suggests it's possible to use the ND data set to calculate the exposure of a given behavior and use the LTCCS data set to calculate the crash exposure to the same behavior.

摘要

卡车事故是美国公路上的一个重大问题。通过分析和比较大型卡车碰撞原因研究(LTCCS)和自然驾驶(ND)数据,可以很好地了解事故原因。这些数据集提供了深入的信息,但具有不同的优势和劣势。LTCCS 包含了高严重性事故(碰撞和致命事故)的信息,但依赖于在事故调查期间收集的数据。LTCCS 确定了事故中的主要驾驶员错误,例如关键原因,但没有详细的行为或情景序列。ND 数据集主要涉及可从动态车辆事件中检测到的非碰撞事件,例如急刹车、转向等,提供了对驾驶员和周围驾驶场景的直接视频观察,以及关于驾驶员输入(运动学)和捕获事件的精确信息,并提供了某些类型的曝光数据,这些数据很难使用事故重建数据获得。ND 数据是连续收集的,因此既能捕捉到安全关键事件,也能捕捉到正常驾驶(即基线)。本项目评估了 LTCCS 和两个大型卡车 ND 数据集(自然驾驶卡车研究和昏昏欲睡驾驶员警告系统现场测试)的大型卡车碰撞数据。对相关因素“尾随过近”的综合风险比分析表明,如果卡车司机尾随过近(即追尾),那么他们发生碰撞的可能性是 ND 碰撞相关冲突的 1.34 倍。考虑到论文中指出的一些注意事项,本研究表明,使用 ND 数据集计算给定行为的暴露情况,使用 LTCCS 数据集计算相同行为的碰撞暴露情况是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验