Helen and Robert Appel Alzheimer's Disease Research Institute and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
Helen and Robert Appel Alzheimer's Disease Research Institute and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
Structure. 2018 Feb 6;26(2):225-237.e3. doi: 10.1016/j.str.2017.12.006. Epub 2018 Jan 4.
We have determined the crystal structure of Clover, one of the brightest fluorescent proteins, and found that its T203H/S65G mutations relative to wild-type GFP lock the critical E222 side chain in a fixed configuration that mimics the major conformer of that in EGFP. The resulting equilibrium shift to the predominantly deprotonated chromophore increases the extinction coefficient (EC), opposes photoactivation, and is responsible for the bathochromic shift. Clover's brightness can further be attributed to a π-π stacking interaction between H203 and the chromophore. Consistent with these observations, the Clover G65S mutant reversed the equilibrium shift, dramatically decreased the EC, and made Clover photoactivatable under conditions that activated photoactivatable GFP. Using the Clover structure, we rationally engineered a non-photoactivatable redox sensor, roClover1, and determined its structure as well as that of its parental template, roClover0.1. These high-resolution structures provide deeper insights into structure-function relationships in GFPs and may aid the development of excitation-improved ratiometric biosensors.
我们已经确定了 Clover(一种最亮的荧光蛋白之一)的晶体结构,并发现与野生型 GFP 相比,其 T203H/S65G 突变将关键的 E222 侧链锁定在模拟 EGFP 中主要构象的固定构象中。由此产生的平衡向主要去质子化生色团的转移增加了消光系数(EC),反对光活化,并导致红移。Clover 的亮度还可以归因于 H203 和生色团之间的π-π堆积相互作用。与这些观察结果一致,Clover G65S 突变体逆转了平衡转移,大大降低了 EC,并使 Clover 在激活 photoactivatable GFP 的条件下可光活化。利用 Clover 的结构,我们合理设计了一种非光活化的氧化还原传感器 roClover1,并确定了其结构及其母体模板 roClover0.1 的结构。这些高分辨率结构提供了对 GFP 中结构-功能关系的更深入了解,并可能有助于开发激发改进的比率生物传感器。