Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA; Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, San Antonio, TX, 78229, USA.
Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA; Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, San Antonio, TX, 78229, USA.
Neuropharmacology. 2018 Mar 15;131:414-423. doi: 10.1016/j.neuropharm.2018.01.004. Epub 2018 Jan 5.
Midbrain dopamine neurons play physiological roles in many processes including reward learning and motivated behavior, and are tonically inhibited by γ-aminobutyric acid (GABA)ergic input from multiple brain regions. Neurotensin (NT) is a neuropeptide which acutely modulates midbrain dopamine neuron excitability through multiple mechanisms, one of which is a decrease of GABA-mediated inhibition. However, the mechanisms through which NT depresses GABA signaling are not known. Here we used whole cell patch-clamp electrophysiology of dopamine neurons in mouse brain slices to show that NT acts both presynaptically to increase GABA and postsynaptically to decrease GABA receptor-mediated currents in the substantia nigra. The active peptide fragment NT enhanced GABA signaling presynaptically by causing an increase in the size of the readily releasable pool of GABA via activation of the NT type-1 receptor and protein kinase A. Conversely, NT depressed GABA signaling postsynaptically via the NT type-2 receptor in a process that was modulated by protein kinase C. Both forms of plasticity could be observed simultaneously in single dopamine neurons. Thus, as the kinetics of GABA signaling are significantly faster than those of GABA signaling, NT functionally speeds GABAergic input to midbrain dopamine neurons. This finding contributes to our understanding of how neuropeptide-induced plasticity can simultaneously differentiate and integrate signaling by a single neurotransmitter in a single cell and provides a basis for understanding how neuropeptides use temporal shifts in synaptic strength to encode information.
中脑多巴胺神经元在许多过程中发挥生理作用,包括奖励学习和动机行为,并且被来自多个脑区的γ-氨基丁酸 (GABA) 能输入持续抑制。神经降压素 (NT) 是一种神经肽,通过多种机制急性调节中脑多巴胺神经元兴奋性,其中一种机制是减少 GABA 介导的抑制。然而,NT 抑制 GABA 信号的机制尚不清楚。在这里,我们使用小鼠脑片的全细胞膜片钳电生理学研究表明,NT 既可以在突触前作用以增加 GABA,也可以在突触后作用以减少黑质中的 GABA 受体介导的电流。活性肽片段 NT 通过激活 NT 型 1 受体和蛋白激酶 A 增加 GABA 的易释放池大小,从而在突触前增强 GABA 信号。相反,NT 通过 NT 型 2 受体在蛋白激酶 C 调节的过程中抑制 GABA 信号传递。这两种形式的可塑性都可以在单个多巴胺神经元中同时观察到。因此,由于 GABA 信号传递的动力学明显快于 GABA 信号传递的动力学,NT 可以使 GABA 能输入到中脑多巴胺神经元的功能加快。这一发现有助于我们理解神经肽诱导的可塑性如何能够同时区分和整合单个细胞中单一神经递质的信号传递,并为理解神经肽如何利用突触强度的时间变化来编码信息提供了基础。
J Neurosci. 2018-12-12
Evid Based Complement Alternat Med. 2022-5-29
J Mol Neurosci. 2021-10
Eur J Neurosci. 2018-2-28
Behav Pharmacol. 2016-4
J Psychopharmacol. 2016-2
Int J Neuropsychopharmacol. 2014-10-31