Department of Neurology, Ludwig-Maximilians-Universität München, Marchioninistr. 15, D-81377 Munich, Germany; Graduate School of Systemic Neurosciences, GSN, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2, D-82152 Martinsried, Germany.
Department of Neurology, Ludwig-Maximilians-Universität München, Marchioninistr. 15, D-81377 Munich, Germany; Graduate School of Systemic Neurosciences, GSN, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2, D-82152 Martinsried, Germany; German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität München, Marchioninistr. 15, D-81377 Munich, Germany.
Neuroimage. 2018 May 1;171:222-233. doi: 10.1016/j.neuroimage.2018.01.001. Epub 2018 Jan 4.
Inhibitory control is an important executive function that is necessary to suppress premature actions and to block interference from irrelevant stimuli. Current experimental studies and models highlight proactive and reactive mechanisms and claim several cortical and subcortical structures to be involved in response inhibition. However, the involved structures, network mechanisms and the behavioral relevance of the underlying neural activity remain debated. We report cortical EEG and invasive subthalamic local field potential recordings from a fully implanted sensing neurostimulator in Parkinson's patients during a stimulus- and response conflict task with and without deep brain stimulation (DBS). DBS made reaction times faster overall while leaving the effects of conflict intact: this lack of any effect on conflict may have been inherent to our task encouraging a high level of proactive inhibition. Drift diffusion modelling hints that DBS influences decision thresholds and drift rates are modulated by stimulus conflict. Both cortical EEG and subthalamic (STN) LFP oscillations reflected reaction times (RT). With these results, we provide a different interpretation of previously conflict-related oscillations in the STN and suggest that the STN implements a general task-specific decision threshold. The timecourse and topography of subthalamic-cortical oscillatory connectivity suggest the involvement of motor, frontal midline and posterior regions in a larger network with complementary functionality, oscillatory mechanisms and structures. While beta oscillations are functionally associated with motor cortical-subthalamic connectivity, low frequency oscillations reveal a subthalamic-frontal-posterior network. With our results, we suggest that proactive as well as reactive mechanisms and structures are involved in implementing a task-related dynamic inhibitory signal. We propose that motor and executive control networks with complementary oscillatory mechanisms are tonically active, react to stimuli and release inhibition at the response when uncertainty is resolved and return to their default state afterwards.
抑制控制是一种重要的执行功能,对于抑制过早的行为和阻止无关刺激的干扰是必要的。目前的实验研究和模型强调了主动和被动的机制,并声称几个皮层和皮层下结构参与了反应抑制。然而,涉及的结构、网络机制和潜在神经活动的行为相关性仍存在争议。我们报告了在帕金森病患者中,使用完全植入的感应神经刺激器,在刺激和反应冲突任务中,进行皮层脑电图和侵入性丘脑底核局部场电位记录,同时进行和不进行深部脑刺激(DBS)。DBS 总体上使反应时间更快,同时保持冲突的影响不变:这种对冲突没有任何影响可能是我们的任务所固有的,鼓励高水平的主动抑制。漂移扩散模型提示 DBS 影响决策阈值,漂移率受刺激冲突的调节。皮层 EEG 和丘脑底核(STN)LFP 振荡都反映了反应时间(RT)。通过这些结果,我们对 STN 中以前与冲突相关的振荡提供了不同的解释,并提出 STN 实现了一个通用的特定于任务的决策阈值。STN 与皮层的时程和拓扑连接性振荡提示运动、额中线和后区参与了一个具有互补功能、振荡机制和结构的更大网络。虽然 beta 振荡与运动皮层-丘脑底核连接功能相关,但低频振荡揭示了一个丘脑底核-额-后网络。通过我们的结果,我们提出主动和被动的机制和结构都参与了实施与任务相关的动态抑制信号。我们提出运动和执行控制网络具有互补的振荡机制,它们是紧张的,对刺激作出反应,并在不确定性得到解决时释放抑制,然后返回其默认状态。