Suppr超能文献

利用诱导多能干细胞技术建模罕见病。

Modeling rare diseases with induced pluripotent stem cell technology.

机构信息

Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.

Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.

出版信息

Mol Cell Probes. 2018 Aug;40:52-59. doi: 10.1016/j.mcp.2018.01.001. Epub 2018 Jan 5.

Abstract

Rare diseases, in totality, affect a significant proportion of the population and represent an unmet medical need facing the scientific community. However, the treatment of individuals affected by rare diseases is hampered by poorly understood mechanisms preventing the development of viable therapeutics. The discovery and application of cellular reprogramming to create novel induced pluripotent stem cell models of rare diseases has revolutionized the rare disease community. Through developmental and functional analysis of differentiated cell types, these stem cell models carrying patient-specific mutations have become an invaluable tool for rare disease research. In this review article, we discuss the reprogramming of samples from individuals affected with rare diseases to induced pluripotent stem cells, current and future applications for this technology, and how integration of genome editing to rare disease research will help to improve our understanding of disease pathogenesis and lead to patient therapies.

摘要

罕见病总体上影响了相当一部分人群,代表了科学界尚未满足的医疗需求。然而,由于对导致治疗方法不可行的机制了解甚少,受罕见病影响的个体的治疗受到了阻碍。细胞重编程的发现和应用为创建罕见病新型诱导多能干细胞模型带来了革命性的变化。通过对分化细胞类型的发育和功能分析,这些携带患者特异性突变的干细胞模型已成为罕见病研究的宝贵工具。在这篇综述文章中,我们讨论了将受罕见病影响的个体样本重编程为诱导多能干细胞的方法,该技术的当前和未来应用,以及将基因组编辑整合到罕见病研究中如何帮助我们更好地理解疾病发病机制并为患者带来治疗方法。

相似文献

1
Modeling rare diseases with induced pluripotent stem cell technology.
Mol Cell Probes. 2018 Aug;40:52-59. doi: 10.1016/j.mcp.2018.01.001. Epub 2018 Jan 5.
3
Induced Pluripotent Stem Cells Meet Genome Editing.
Cell Stem Cell. 2016 May 5;18(5):573-86. doi: 10.1016/j.stem.2016.04.013.
4
CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells.
Curr Stem Cell Res Ther. 2018;13(4):243-251. doi: 10.2174/1574888X13666180214124800.
7
Genome editing of hPSCs: Recent progress in hPSC-based disease modeling for understanding disease mechanisms.
Prog Mol Biol Transl Sci. 2021;181:271-287. doi: 10.1016/bs.pmbts.2021.01.020. Epub 2021 Feb 24.
8
CRISPR/Cas9-based Targeted Genome Editing for the Development of Monogenic Diseases Models with Human Pluripotent Stem Cells.
Curr Protoc Stem Cell Biol. 2018 May;45(1):e50. doi: 10.1002/cpsc.50. Epub 2018 Apr 26.
9
A Rapid Pipeline to Model Rare Neurodevelopmental Disorders with Simultaneous CRISPR/Cas9 Gene Editing.
Stem Cells Transl Med. 2017 Mar;6(3):886-896. doi: 10.1002/sctm.16-0158. Epub 2016 Dec 1.
10
Genome Editing in Induced Pluripotent Stem Cells using CRISPR/Cas9.
Stem Cell Rev Rep. 2018 Jun;14(3):323-336. doi: 10.1007/s12015-018-9811-3.

引用本文的文献

1
Understanding PACS2 syndrome's pathomechanism by studying E209K and E211K mutations.
Mamm Genome. 2024 Dec 30. doi: 10.1007/s00335-024-10098-5.
2
Rare disease genomics and precision medicine.
Genomics Inform. 2024 Dec 3;22(1):28. doi: 10.1186/s44342-024-00032-1.
3
Unleashing the Power of Induced Pluripotent stem Cells in in vitro Modelling of Lesch-Nyhan Disease.
Stem Cell Rev Rep. 2025 Feb;21(2):304-318. doi: 10.1007/s12015-024-10821-4. Epub 2024 Nov 4.
4
Integrating population genetics, stem cell biology and cellular genomics to study complex human diseases.
Nat Genet. 2024 May;56(5):758-766. doi: 10.1038/s41588-024-01731-9. Epub 2024 May 13.
5
RNA Sequencing in Disease Diagnosis.
Annu Rev Genomics Hum Genet. 2024 Aug;25(1):353-367. doi: 10.1146/annurev-genom-021623-121812. Epub 2024 Aug 6.
6
VEGF Secretion Drives Bone Formation in Classical MAP2K1+ Melorheostosis.
J Bone Miner Res. 2023 Dec;38(12):1834-1845. doi: 10.1002/jbmr.4915. Epub 2023 Oct 24.
7
A disease-specific iPS cell resource for studying rare and intractable diseases.
Inflamm Regen. 2023 Sep 8;43(1):43. doi: 10.1186/s41232-023-00294-2.
9
Induced pluripotent stem cells from domesticated ruminants and their potential for enhancing livestock production.
Front Vet Sci. 2023 Feb 20;10:1129287. doi: 10.3389/fvets.2023.1129287. eCollection 2023.
10
Organoid factory: The recent role of the human induced pluripotent stem cells (hiPSCs) in precision medicine.
Front Cell Dev Biol. 2023 Jan 9;10:1059579. doi: 10.3389/fcell.2022.1059579. eCollection 2022.

本文引用的文献

1
Correction of a pathogenic gene mutation in human embryos.
Nature. 2017 Aug 24;548(7668):413-419. doi: 10.1038/nature23305. Epub 2017 Aug 2.
3
Neural stem cells for disease modeling of Wolman disease and evaluation of therapeutics.
Orphanet J Rare Dis. 2017 Jun 28;12(1):120. doi: 10.1186/s13023-017-0670-9.
4
Impaired mitophagy facilitates mitochondrial damage in Danon disease.
J Mol Cell Cardiol. 2017 Jul;108:86-94. doi: 10.1016/j.yjmcc.2017.05.007. Epub 2017 May 16.
5
Fused cerebral organoids model interactions between brain regions.
Nat Methods. 2017 Jul;14(7):743-751. doi: 10.1038/nmeth.4304. Epub 2017 May 10.
8
Assembly of functionally integrated human forebrain spheroids.
Nature. 2017 May 4;545(7652):54-59. doi: 10.1038/nature22330. Epub 2017 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验