Suppr超能文献

伏隔核亚核通过直接抑制和去抑制 VTA 多巴胺亚群调节动机行为。

Nucleus Accumbens Subnuclei Regulate Motivated Behavior via Direct Inhibition and Disinhibition of VTA Dopamine Subpopulations.

机构信息

Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA.

Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA.

出版信息

Neuron. 2018 Jan 17;97(2):434-449.e4. doi: 10.1016/j.neuron.2017.12.022. Epub 2018 Jan 4.

Abstract

Mesolimbic dopamine (DA) neurons play a central role in motivation and reward processing. Although the activity of these mesolimbic DA neurons is controlled by afferent inputs, little is known about the circuits in which they are embedded. Using retrograde tracing, electrophysiology, optogenetics, and behavioral assays, we identify principles of afferent-specific control in the mesolimbic DA system. Neurons in the medial shell subdivision of the nucleus accumbens (NAc) exert direct inhibitory control over two separate populations of mesolimbic DA neurons by activating different GABA receptor subtypes. In contrast, NAc lateral shell neurons mainly synapse onto ventral tegmental area (VTA) GABA neurons, resulting in disinhibition of DA neurons that project back to the NAc lateral shell. Lastly, we establish a critical role for NAc subregion-specific input to the VTA underlying motivated behavior. Collectively, our results suggest a distinction in the incorporation of inhibitory inputs between different subtypes of mesolimbic DA neurons.

摘要

中脑边缘多巴胺(DA)神经元在动机和奖励处理中发挥核心作用。尽管这些中脑边缘 DA 神经元的活动受到传入输入的控制,但对于它们所在的回路知之甚少。通过逆行追踪、电生理学、光遗传学和行为分析,我们确定了中脑边缘 DA 系统中传入特定控制的原则。伏隔核(NAc)内侧壳亚区的神经元通过激活不同的 GABA 受体亚型,对两个独立的中脑边缘 DA 神经元群施加直接抑制控制。相比之下,NAc 外侧壳神经元主要与腹侧被盖区(VTA)GABA 神经元形成突触,导致投射回 NAc 外侧壳的 DA 神经元去抑制。最后,我们确定了 NAc 亚区特异性输入对 VTA 驱动行为的关键作用。总的来说,我们的研究结果表明,不同亚型的中脑边缘 DA 神经元对抑制性输入的整合存在差异。

相似文献

1
Nucleus Accumbens Subnuclei Regulate Motivated Behavior via Direct Inhibition and Disinhibition of VTA Dopamine Subpopulations.
Neuron. 2018 Jan 17;97(2):434-449.e4. doi: 10.1016/j.neuron.2017.12.022. Epub 2018 Jan 4.
3
Disinhibition of Mesolimbic Dopamine Circuit by the Lateral Hypothalamus Regulates Pain Sensation.
J Neurosci. 2023 Jun 14;43(24):4525-4540. doi: 10.1523/JNEUROSCI.2298-22.2023. Epub 2023 May 15.
4
Distinct dynamics and intrinsic properties in ventral tegmental area populations mediate reward association and motivation.
Cell Rep. 2024 Sep 24;43(9):114668. doi: 10.1016/j.celrep.2024.114668. Epub 2024 Aug 27.
5
Activation of VTA GABA neurons disrupts reward consumption.
Neuron. 2012 Mar 22;73(6):1184-94. doi: 10.1016/j.neuron.2012.02.016. Epub 2012 Mar 21.
7
Ventral tegmental area GABA neurons mediate stress-induced blunted reward-seeking in mice.
Nat Commun. 2021 Jun 10;12(1):3539. doi: 10.1038/s41467-021-23906-2.
9
Medial Nucleus Accumbens Projections to the Ventral Tegmental Area Control Food Consumption.
J Neurosci. 2020 Jun 10;40(24):4727-4738. doi: 10.1523/JNEUROSCI.3054-18.2020. Epub 2020 Apr 30.
10
Differential expression of long-term potentiation among identified inhibitory inputs to dopamine neurons.
J Neurophysiol. 2017 Oct 1;118(4):1998-2008. doi: 10.1152/jn.00270.2017. Epub 2017 Jul 12.

引用本文的文献

2
Basolateral amygdala dopamine transmits a nonassociative emotional salience signal.
bioRxiv. 2025 May 16:2025.05.15.654323. doi: 10.1101/2025.05.15.654323.
3
A midbrain circuit mechanism for noise-induced negative valence coding.
Nat Commun. 2025 May 17;16(1):4610. doi: 10.1038/s41467-025-59956-z.
4
Melanocortin 4 receptor-expressing neurons in the lateral stripe of the striatum regulate affect and motor control.
iScience. 2025 Apr 16;28(5):112456. doi: 10.1016/j.isci.2025.112456. eCollection 2025 May 16.
7
GABA Receptor: Structure, Biological Functions, and Therapy for Diseases.
MedComm (2020). 2025 Apr 16;6(5):e70163. doi: 10.1002/mco2.70163. eCollection 2025 May.
8
Modulation of comorbid depression of neuropathic pain by dopamine input from VTA to the ventral hippocampus.
Theranostics. 2025 Mar 10;15(9):4101-4123. doi: 10.7150/thno.104394. eCollection 2025.
9
Molecular Tools to Study and Control Dopaminergic Neurotransmission With Light.
Med Res Rev. 2025 Sep;45(5):1407-1422. doi: 10.1002/med.22112. Epub 2025 Apr 10.
10
Changes in neurotensin signalling drive hedonic devaluation in obesity.
Nature. 2025 Mar 26. doi: 10.1038/s41586-025-08748-y.

本文引用的文献

1
Neural Circuitry of Reward Prediction Error.
Annu Rev Neurosci. 2017 Jul 25;40:373-394. doi: 10.1146/annurev-neuro-072116-031109. Epub 2017 Apr 24.
2
Circuit specificity in the inhibitory architecture of the VTA regulates cocaine-induced behavior.
Nat Neurosci. 2017 Mar;20(3):438-448. doi: 10.1038/nn.4482. Epub 2017 Jan 23.
3
Ventral tegmental area: cellular heterogeneity, connectivity and behaviour.
Nat Rev Neurosci. 2017 Feb;18(2):73-85. doi: 10.1038/nrn.2016.165. Epub 2017 Jan 5.
4
Rapid signalling in distinct dopaminergic axons during locomotion and reward.
Nature. 2016 Jul 28;535(7613):505-10. doi: 10.1038/nature18942. Epub 2016 Jul 11.
5
Afferent Inputs to Neurotransmitter-Defined Cell Types in the Ventral Tegmental Area.
Cell Rep. 2016 Jun 21;15(12):2796-808. doi: 10.1016/j.celrep.2016.05.057. Epub 2016 Jun 9.
6
The Emergence of a Circuit Model for Addiction.
Annu Rev Neurosci. 2016 Jul 8;39:257-76. doi: 10.1146/annurev-neuro-070815-013920. Epub 2016 Apr 21.
7
Biophysical constraints of optogenetic inhibition at presynaptic terminals.
Nat Neurosci. 2016 Apr;19(4):554-6. doi: 10.1038/nn.4266. Epub 2016 Mar 7.
8
Dopamine reward prediction-error signalling: a two-component response.
Nat Rev Neurosci. 2016 Mar;17(3):183-95. doi: 10.1038/nrn.2015.26. Epub 2016 Feb 11.
9
Dopamine neurons share common response function for reward prediction error.
Nat Neurosci. 2016 Mar;19(3):479-86. doi: 10.1038/nn.4239. Epub 2016 Feb 8.
10
Functionally Distinct Dopamine Signals in Nucleus Accumbens Core and Shell in the Freely Moving Rat.
J Neurosci. 2016 Jan 6;36(1):98-112. doi: 10.1523/JNEUROSCI.2326-15.2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验