Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
Acta Biomater. 2018 Mar 1;68:261-271. doi: 10.1016/j.actbio.2017.12.041. Epub 2018 Jan 5.
UNLABELLED: This work aims to provide an effective and novel solution for the treatment of infection by using nanovehicles loaded with antibiotics capable of penetrating the bacterial wall, thus increasing the antimicrobial effectiveness. These nanosystems, named "nanoantibiotics", are composed of mesoporous silica nanoparticles (MSNs), which act as nanocarriers of an antimicrobial agent (levofloxacin, LEVO) localized inside the mesopores. To provide the nanosystem of bacterial membrane interaction capability, a polycationic dendrimer, concretely the poly(propyleneimine) dendrimer of third generation (G3), was covalently grafted to the external surface of the LEVO-loaded MSNs. After physicochemical characterization of this nanoantibiotic, the release kinetics of LEVO and the antimicrobial efficacy of each released dosage were evaluated. Besides, internalization studies of the MSNs functionalized with the G3 dendrimer were carried out, showing a high penetrability throughout Gram-negative bacterial membranes. This work evidences that the synergistic combination of polycationic dendrimers as bacterial membrane permeabilization agents with LEVO-loaded MSNs triggers an efficient antimicrobial effect on Gram-negative bacterial biofilm. These positive results open up very promising expectations for their potential application in new infection therapies. STATEMENT OF SIGNIFICANCE: Seeking new alternatives to current available treatments of bacterial infections represents a great challenge in nanomedicine. This work reports the design and optimization of a new class of antimicrobial agent, named "nanoantibiotic", based on mesoporous silica nanoparticles (MSNs) decorated with polypropyleneimine dendrimers of third generation (G3) and loaded with levofloxacin (LEVO) antibiotic. The covalently grafting of these G3 dendrimers to MSNs allows an effective internalization in Gram-negative bacteria. Furthermore, the LEVO loaded into the mesoporous cavities is released in a sustained manner at effective antimicrobial dosages. The novelty and originality of this manuscript relies on proving that the synergistic combination of bacteria-targeting and antimicrobial agents into a unique nanosystem provokes a remarkable antimicrobial effect against bacterial biofilm.
未加标签:本研究旨在提供一种有效的新型方法来治疗感染,使用载有抗生素的纳米载体穿透细菌壁,从而提高抗菌效果。这些纳米系统被称为“纳米抗生素”,由介孔硅纳米粒子(MSNs)组成,MSNs 作为抗菌剂(左氧氟沙星,LEVO)的纳米载体,位于介孔内。为了提供纳米系统与细菌膜相互作用的能力,将一种阳离子聚合物树状大分子,具体为第三代的聚(丙烯亚胺)树状大分子(G3),共价接枝到载有 LEVO 的 MSNs 的外表面。对这种纳米抗生素进行理化特性表征后,评估了 LEVO 的释放动力学和每个释放剂量的抗菌效果。此外,还进行了用 G3 树状大分子功能化的 MSNs 的内化研究,结果表明其具有穿过革兰氏阴性细菌膜的高穿透性。这项研究证明,将阳离子聚合物树状大分子作为细菌膜通透性增强剂与载有 LEVO 的 MSNs 协同组合,可对革兰氏阴性细菌生物膜产生有效的抗菌作用。这些积极的结果为其在新的感染治疗中的潜在应用带来了非常有前景的期望。
意义声明:寻找当前治疗细菌感染的方法的新替代方法是纳米医学的一大挑战。本研究报告了一种基于介孔硅纳米粒子(MSNs)的新型抗菌剂(称为“纳米抗生素”)的设计和优化,该纳米粒子用第三代聚(丙烯亚胺)树状大分子(G3)进行了装饰,并负载了左氧氟沙星(LEVO)抗生素。这些 G3 树状大分子与 MSNs 的共价接枝允许在革兰氏阴性细菌中进行有效的内化。此外,负载到介孔腔中的 LEVO 以有效的抗菌剂量持续释放。本手稿的新颖性和原创性在于证明将靶向细菌的试剂和抗菌剂协同组合到一个独特的纳米系统中,可以对细菌生物膜产生显著的抗菌作用。
Acta Biomater. 2019-7-3
Phys Chem Chem Phys. 2013-5-20
Int J Nanomedicine. 2020-7-7
Colloids Surf B Biointerfaces. 2018-12-13
Naunyn Schmiedebergs Arch Pharmacol. 2024-6
Chem Mater. 2023-10-16
Materials (Basel). 2023-7-30