Suppr超能文献

氧化铁纳米链在透射电子显微镜加热过程中的还原反应和致密化

Reduction reactions and densification during TEM heating of iron oxide nanochains.

作者信息

Bonifacio Cecile S, Das Gautom, Kennedy Ian M, van Benthem Klaus

机构信息

Department of Materials Science and Engineering, University of California Davis, 1 Shields Ave., Davis, California 95616, USA.

Department of Mechanical and Aerospace Engineering, University of California Davis, 1 Shields Ave., Davis, California, 95616, USA.

出版信息

J Appl Phys. 2017 Dec 21;122(23):234303. doi: 10.1063/1.5004092.

Abstract

The reduction reactions and densification of nanochains assembled from -FeO nanoparticles were investigated using transmission electron microscopy (TEM). Morphological changes and reduction of the metal oxide nanochains were observed during TEM annealing through simultaneous imaging and quantitative analysis of the near-edge fine structures of Fe L absorption edges acquired by spatially resolved electron energy loss spectroscopy. A change in the oxidation states during annealing of the iron oxide nanochains was observed with phase transformations due to continuous reduction from FeO over FeO, FeO to metallic Fe. Phase transitions during the heating experiments were accompanied with morphological changes in the nanochains, specifically rough-to-smooth surface transitions below 500 °C, neck formation between adjacent particles around 500 °C, and subsequent neck growth. At higher temperatures, coalescence of FeO particles was observed, representing densification.

摘要

利用透射电子显微镜(TEM)研究了由-FeO纳米颗粒组装而成的纳米链的还原反应和致密化过程。通过对空间分辨电子能量损失谱获取的Fe L吸收边近边精细结构进行同步成像和定量分析,在TEM退火过程中观察到了金属氧化物纳米链的形态变化和还原情况。随着氧化铁纳米链从FeO经FeO、FeO持续还原为金属Fe而发生相变,观察到了退火过程中氧化态的变化。加热实验中的相变伴随着纳米链的形态变化,具体表现为低于500°C时表面从粗糙到光滑的转变,500°C左右相邻颗粒之间形成颈部,随后颈部生长。在较高温度下,观察到FeO颗粒的聚结,这代表着致密化。

相似文献

1
Reduction reactions and densification during TEM heating of iron oxide nanochains.
J Appl Phys. 2017 Dec 21;122(23):234303. doi: 10.1063/1.5004092.
2
The Influence of Cu and Al Additives on Reduction of Iron(III) Oxide: In Situ XRD and XANES Study.
Inorg Chem. 2019 Apr 15;58(8):4842-4850. doi: 10.1021/acs.inorgchem.8b03403. Epub 2019 Apr 4.
3
Spatially resolved energy electron loss spectroscopy studies of iron oxide nanoparticles.
Microsc Microanal. 2006 Oct;12(5):424-31. doi: 10.1017/S1431927606060491.
5
Structural characterization of self-assembled chain like Fe-FeOx Core shell nanostructure.
Nanoscale Res Lett. 2019 Sep 9;14(1):308. doi: 10.1186/s11671-019-3128-2.
6
In Situ Atomic-Scale Probing of the Reduction Dynamics of Two-Dimensional FeO Nanostructures.
ACS Nano. 2017 Jan 24;11(1):656-664. doi: 10.1021/acsnano.6b06950. Epub 2016 Dec 19.
7
Molecular insights of oxidation process of iron nanoparticles: spectroscopic, magnetic, and microscopic evidence.
Environ Sci Technol. 2014 Dec 2;48(23):13888-94. doi: 10.1021/es503154q. Epub 2014 Nov 17.
8
Understanding catalyst behavior during in situ heating through simultaneous secondary and transmitted electron imaging.
Nanoscale Res Lett. 2014 Nov 14;9(1):614. doi: 10.1186/1556-276X-9-614. eCollection 2014.
9
X-ray and electron microscopy studies on the biodistribution and biomodification of iron oxide nanoparticles in Daphnia magna.
Colloids Surf B Biointerfaces. 2014 Oct 1;122:384-389. doi: 10.1016/j.colsurfb.2014.07.016. Epub 2014 Jul 21.
10
Highly efficient antibacterial iron oxide@carbon nanochains from wüstite precursor nanoparticles.
ACS Appl Mater Interfaces. 2014 Nov 26;6(22):20154-63. doi: 10.1021/am505744m. Epub 2014 Oct 27.

本文引用的文献

1
Oxidation-Induced Surface Roughening of Aluminum Nanoparticles Formed in an Ablation Plume.
Phys Rev Lett. 2015 Dec 11;115(24):246101. doi: 10.1103/PhysRevLett.115.246101.
2
Ultra-long Magnetic Nanochains for Highly Efficient Arsenic Removal from Water.
J Mater Chem A Mater. 2014 Aug 28;2(32):12974-12981. doi: 10.1039/C4TA02614D.
4
Fatty Acid Binding Domain Mediated Conjugation of Ultrafine Magnetic Nanoparticles with Albumin Protein.
Nanoscale Res Lett. 2008 Nov 22;4(2):138-143. doi: 10.1007/s11671-008-9213-6.
5
A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures.
Microsc Res Tech. 2009 Mar;72(3):208-15. doi: 10.1002/jemt.20673.
8
Spatially resolved energy electron loss spectroscopy studies of iron oxide nanoparticles.
Microsc Microanal. 2006 Oct;12(5):424-31. doi: 10.1017/S1431927606060491.
9
Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.
Biomaterials. 2005 Jun;26(18):3995-4021. doi: 10.1016/j.biomaterials.2004.10.012.
10
Oxidative stress and NFkappaB activation in the lungs of rats: a synergistic interaction between soot and iron particles.
Toxicol Appl Pharmacol. 2003 Jul 15;190(2):157-69. doi: 10.1016/s0041-008x(03)00157-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验