Vela Sergi, Deumal Mercè, Shiga Motoyuki, Novoa Juan J, Ribas-Arino Jordi
Departament de Química Física and IQTCUB , Facultat de Química , Universitat de Barcelona , Av. Diagonal 645 , 08028-Barcelona , Spain . Email:
Center for Computational Science and E-Systems , Japan Atomic Energy Agency , 148-4, Kashiwanoha Campus, 178-4 Wakashiba, Kashiwa , Chiba , 277-0871 , Japan.
Chem Sci. 2015 Apr 1;6(4):2371-2381. doi: 10.1039/c4sc03930k. Epub 2015 Jan 23.
The magnetic properties of molecule-based magnets are commonly rationalized by considering only a single nuclear configuration of the system under study (usually an X-ray crystal structure). Here, by means of a computational study, we compare the results obtained using such a approach with those obtained by explicitly accounting for thermal fluctuations, and uncover the serious limitations of the perspective when dealing with magnetic crystals whose radicals undergo wide-amplitude motions. As a proof of concept, these limitations are illustrated for the magnetically bistable 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA) material. For its high-temperature phase at 300 K, we show that nuclear dynamics induce large fluctuations in the magnetic exchange interactions () between spins (up to 1000% of the average value). These deviations result in a ∼20% difference between the 300 K magnetic susceptibility computed by explicitly considering the nuclear dynamics and that computed using the X-ray structure, the former being in better agreement with the experimental data. The unveiled strong coupling between interactions and intermolecular vibrations reveals that considering as a constant value at a given temperature (as always done in molecular magnetism) leads to a flawed description of the magnetism of TTTA. Instead, the physically relevant concept in this case is the statistical distribution of values. The discovery that a single X-ray structure is not adequate enough to interpret the magnetic properties of TTTA is also expected to be decisive in other organic magnets with dominant exchange interactions propagating through labile π-π networks.
基于分子的磁体的磁性通常仅通过考虑所研究系统的单一核构型(通常是X射线晶体结构)来进行合理解释。在此,通过一项计算研究,我们将使用这种方法获得的结果与通过明确考虑热涨落获得的结果进行比较,并揭示了在处理其自由基经历大幅度运动的磁性晶体时这种观点的严重局限性。作为概念验证,以磁双稳态的1,3,5 - 三硫杂 - 2,4,6 - 三氮杂戊搭烯(TTTA)材料为例说明了这些局限性。对于其在300 K的高温相,我们表明核动力学在自旋之间的磁交换相互作用()中引起大幅涨落(高达平均值的1000%)。这些偏差导致通过明确考虑核动力学计算得到的300 K磁化率与使用X射线结构计算得到的磁化率之间存在约20%的差异,前者与实验数据的吻合度更好。所揭示的相互作用与分子间振动之间的强耦合表明,在给定温度下将视为恒定值(分子磁学中一直如此)会导致对TTTA磁性的错误描述。相反,在这种情况下物理上相关的概念是的值的统计分布。发现单一的X射线结构不足以解释TTTA的磁性,预计在其他通过不稳定的π - π网络传播主导交换相互作用的有机磁体中也具有决定性意义。