Laboratoire Ondes et Matière d'Aquitaine, Université de Bordeaux & CNRS, 33405 Talence, France.
Soft Matter. 2018 Jan 31;14(5):848-852. doi: 10.1039/c7sm01317e.
We theoretically study the molecular-weight dependence of DNA thermophoresis, which arises from mutual advection of the n repeat units of the molecular chain. As a main result we find that the dominant driving forces, i.e., the thermally induced permittivity gradient and the electrolyte Seebeck effect, result in characteristic hydrodynamic screening. In comparison with recent experimental data on single-stranded DNA (2 ≤ n ≤ 80), our theory provides a good description for the increase of the drift velocity up to n = 30; the slowing-down of longer molecules is well accounted for by a simple model for counterion condensation. It turns out that thermophoresis may change sign as a function of n: for an appropriate choice of the salt-specific Seebeck coefficient, short molecules move to the cold and long ones to the hot; this could be used for separating DNA by molecular weight.
我们从理论上研究了 DNA 热泳动的分子量依赖性,这是由分子链的 n 个重复单元的相互对流引起的。作为主要结果,我们发现主要驱动力,即热诱导介电梯度和电解质塞贝克效应,导致了特征的流体动力学屏蔽。与最近关于单链 DNA(2 ≤ n ≤ 80)的实验数据相比,我们的理论很好地描述了漂移速度增加到 n = 30 的情况;对于较长分子的减速,简单的抗衡离子凝聚模型可以很好地解释。事实证明,热泳动可能会随着 n 的变化而改变符号:对于盐特定塞贝克系数的适当选择,短分子会移向冷端,长分子会移向热端;这可用于根据分子量分离 DNA。