University of California, Los Angeles, CA, USA.
University of California, Berkeley, CA, USA.
Biostatistics. 2019 Jan 1;20(1):164-179. doi: 10.1093/biostatistics/kxx070.
We propose the Monte Carlo local likelihood (MCLL) method for approximating maximum likelihood estimation (MLE). MCLL initially treats model parameters as random variables, sampling them from the posterior distribution as in a Bayesian model. The likelihood function is then approximated up to a constant by fitting a density to the posterior samples and dividing the approximate posterior density by the prior. In the MCLL algorithm, the posterior density is estimated using local likelihood density estimation, in which the log-density is locally approximated by a polynomial function. We also develop a new method that allows users to efficiently compute standard errors and the Bayes factor. Two empirical and three simulation studies are provided to demonstrate the performance of the MCLL method.
我们提出了蒙特卡罗局部似然(MCLL)方法来逼近最大似然估计(MLE)。MCLL 最初将模型参数视为随机变量,从后验分布中对其进行抽样,就像在贝叶斯模型中一样。然后,通过拟合密度函数到后验样本并将近似后验密度除以先验密度,对似然函数进行常数逼近。在 MCLL 算法中,使用局部似然密度估计来估计后验密度,其中对数密度通过多项式函数进行局部逼近。我们还开发了一种新方法,允许用户高效地计算标准误差和贝叶斯因子。提供了两个实证研究和三个模拟研究来演示 MCLL 方法的性能。