Nuel Gregory, Lefebvre Alexandra, Bouaziz Olivier
LPMA, UMR CNRS 7599, Paris, France.
UPMC, Sorbonne Universités, Paris, France.
Comput Math Methods Med. 2017;2017:9193630. doi: 10.1155/2017/9193630. Epub 2017 Nov 9.
When considering a genetic disease with variable age at onset (e.g., familial amyloid neuropathy, cancers), computing the individual risk of the disease based on family history (FH) is of critical interest for both clinicians and patients. Such a risk is very challenging to compute because (1) the genotype of the individual of interest is in general unknown, (2) the posterior distribution (∣FH, > ) changes with ( is the age at disease onset for the targeted individual), and (3) the competing risk of death is not negligible. In this work, we present modeling of this problem using a Bayesian network mixed with (right-censored) survival outcomes where hazard rates only depend on the genotype of each individual. We explain how belief propagation can be used to obtain posterior distribution of genotypes given the FH and how to obtain a time-dependent posterior hazard rate for any individual in the pedigree. Finally, we use this posterior hazard rate to compute individual risk, with or without the competing risk of death. Our method is illustrated using the Claus-Easton model for breast cancer. The competing risk of death is derived from the national French registry.
在考虑一种发病年龄可变的遗传疾病(例如,家族性淀粉样神经病、癌症)时,基于家族史(FH)计算个体患该疾病的风险对临床医生和患者都至关重要。计算这种风险极具挑战性,原因如下:(1)一般来说,目标个体的基因型未知;(2)后验分布(|FH, > )会随 ( 是目标个体的疾病发病年龄)而变化;(3)死亡的竞争风险不可忽略。在这项工作中,我们提出使用贝叶斯网络结合(右删失)生存结果对该问题进行建模,其中风险率仅取决于每个个体的基因型。我们解释了如何利用信念传播在已知家族史情况下获得基因型的后验分布,以及如何为系谱中的任何个体获得随时间变化的后验风险率。最后,我们使用这个后验风险率来计算个体风险,无论是否存在死亡的竞争风险。我们使用乳腺癌的克劳斯 - 伊斯顿模型对我们的方法进行了说明。死亡的竞争风险来自法国国家登记处。