Suppr超能文献

Mutational analysis of primosome assembly sites. Evidence for alternative DNA structures.

作者信息

Greenbaum J H, Marians K J

出版信息

J Biol Chem. 1985 Oct 5;260(22):12266-72.

PMID:2931433
Abstract

Primosome assembly sites are complex DNA structures that share common functions (they elicit the DNA-dependent ATPase of replication factor Y from Escherichia coli and serve as origins of complementary strand DNA synthesis), but display little sequence homology. In order to ascertain a common basis for factor Y-DNA recognition, a primosome assembly site and its mutated derivatives have been functionally and structurally analyzed. Under conditions in which they lose the capacity to function as ATPase effectors these DNA templates have been (i) assayed for their ability to bind factor Y, and (ii) probed, with pancreatic DNase, for structural alterations. In this ATPase-inactivating environment (suboptimal concentrations of MgCl2 and NaCl, and high levels of the E. coli single-stranded DNA binding protein), factor Y does not bind to its cognate DNA and the DNase cleavage pattern characteristic of this site is perceptibly changed: compared to the DNase digest obtained under activating conditions, cleavage is notably decreased in the 5' half of the site and enhanced at the 3' end. The results of this study strongly indicate that the structure of the primosome assembly site under analysis consists of two hairpins which interact with each other. When the sites of pancreatic DNase attack are plotted on the proposed double hairpin structure, the 5' cleavage sites all map to one duplex while the 3' sites map to the other. The observation that, under factor Y ATPase-activating conditions, the 3' hairpin is largely refractory to the action of pancreatic DNase indicates that tertiary interactions between the two duplexes render a portion of the DNA structure inaccessible to the nuclease.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验