The Lyell Centre, Heriot-Watt University, Edinburgh, UK.
Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Karlsruhe, Germany.
Environ Microbiol. 2018 Mar;20(3):1016-1029. doi: 10.1111/1462-2920.14036. Epub 2018 Jan 18.
Understanding of global methane sources and sinks is a prerequisite for the design of strategies to counteract global warming. Microbial methane oxidation in soils represents the largest biological sink for atmospheric methane. However, still very little is known about the identity, metabolic properties and distribution of the microbial group proposed to be responsible for most of this uptake, the uncultivated upland soil cluster α (USCα). Here, we reconstructed a draft genome of USCα from a combination of targeted cell sorting and metagenomes from forest soil, providing the first insights into its metabolic potential and environmental adaptation strategies. The 16S rRNA gene sequence recovered was distinctive and suggests this crucial group as a new genus within the Beijerinckiaceae, close to Methylocapsa. Application of a fluorescently labelled suicide substrate for the particulate methane monooxygenase enzyme (pMMO) coupled to 16S rRNA fluorescence in situ hybridisation (FISH) allowed for the first time a direct link of the high-affinity activity of methane oxidation to USCα cells in situ. Analysis of the global biogeography of this group further revealed its presence in previously unrecognized habitats, such as subterranean and volcanic biofilm environments, indicating a potential role of these environments in the biological sink for atmospheric methane.
了解全球甲烷的源与汇是设计对抗全球变暖策略的前提。土壤中的微生物甲烷氧化作用代表了大气甲烷的最大生物汇。然而,对于被认为是负责大部分甲烷吸收的微生物群的身份、代谢特性和分布,我们仍然知之甚少,这个微生物群就是未培养旱地土壤群α(USCα)。在这里,我们通过靶向细胞分选和森林土壤宏基因组组合,重建了 USCα 的草图基因组,首次深入了解了其代谢潜力和环境适应策略。恢复的 16S rRNA 基因序列具有独特性,表明这一关键群体是拜叶林克氏菌科的一个新属,与甲基球菌属密切相关。将一种荧光标记的颗粒状甲烷单加氧酶(pMMO)的自杀底物与 16S rRNA 荧光原位杂交(FISH)相结合的应用,首次能够直接将甲烷氧化的高亲和力活性与 USCα 细胞在原位联系起来。对该类群全球生物地理学的分析进一步揭示了其在以前未被识别的栖息地中的存在,如地下和火山生物膜环境,表明这些环境在大气甲烷的生物汇中可能发挥作用。