Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland.
Environ Toxicol Chem. 2018 May;37(5):1387-1395. doi: 10.1002/etc.4080. Epub 2018 Apr 6.
Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al O , nano-SiO , nano iron oxides, nano-CeO , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots < nano-CeO < nano iron oxides < nano-Al O < nano-SiO . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al O > nano-SiO > nano iron oxides > nano-CeO > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC.
许多研究都致力于研究工程纳米材料(ENMs)的生态毒理学危害。然而,关于 ENMs 的实际环境风险,结合危害和暴露数据,人们知之甚少。本研究的目的是通过比较预测环境浓度(PEC)和预测无效应浓度(PNEC)来量化纳米-Al2O3、纳米-SiO2、纳米氧化铁、纳米-CeO2 和量子点的环境风险。这些 5 种 ENMs 在 2020 年北欧和东南欧淡水环境中的 PEC 值取自已发表的动态概率物质流分析模型。PNEC 值是使用概率物种敏感度分布(SSD)计算的。PNEC 值的顺序为量子点<纳米-CeO2<纳米氧化铁<纳米-Al2O3<纳米-SiO2。这些 5 种 ENMs 所带来的风险则呈现相反的顺序:纳米-Al2O3>纳米-SiO2>纳米氧化铁>纳米-CeO2>量子点。然而,所有风险特征值均低于 1,相差 4 到 8 个数量级,因此在 2020 年估计的释放水平下,任何所研究的 ENM 都不会产生风险。与静态模型相比,动态物质流模型使我们能够使用基于更复杂参数化的 PEC 值,考虑随时间变化的动态输入和 ENMs 的时变释放。概率 SSD 方法可以通过考虑研究和材料类型之间的整个变异性范围,将所有可用数据纳入到对 ENM 危害的估计中。因此,风险评估方法能够处理与所收集数据相关的不确定性和变异性。本研究的结果为所研究的 ENM 基于风险的监管决策提供了科学依据。Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC.
Environ Toxicol Chem. 2018-4-6
Sci Total Environ. 2015-12-31
Environ Sci Nano. 2022-3-1
Materials (Basel). 2020-10-13
Front Bioeng Biotechnol. 2019-12-17
Environ Sci Pollut Res Int. 2019-3-29