Suppr超能文献

用于保护锂金属阳极的混合离子和电子导体。

Mixed Ionic and Electronic Conductor for Li-Metal Anode Protection.

机构信息

College of Textile, Donghua University, Shanghai, 200131, China.

Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.

出版信息

Adv Mater. 2018 Feb;30(7). doi: 10.1002/adma.201705105. Epub 2018 Jan 8.

Abstract

Li-metal is the optimal choice as an anode due to its highest energy density. However, Li-anodes suffer safety problems from dendritic Li-growth and continuous corrosion by liquid electrolytes. Here, an effective strategy of using ultrathin and conformal mixed ionic and electronic ceramic conductor (MIEC) is proposed to stabilize Li-anodes. An ultrathin Li La [V] TiO (LLTO) ceramic film with superior ionic conductivity is first obtained by sintering single-crystal LLTO nanoparticles, which have controlled surface facets and particle sizes. Then the MIEC property is developed in the LLTO film by introducing toluene as catalyst, which triggers the chemical reactions between LLTO and Li-metal, leading to high electronic conductivity in the LLTO film. After evaporating toluene, a hybrid LLTO/Li anode with a conformal and stable interface is formed. When applying the hybrid anodes in Li-metal batteries, the MIEC ceramic film blocks Li-corrosion from electrolyte and the formation of Li-dendrites by buffering the Li-ion concentration gradient and leveling secondary current distribution on Li-metal surface. At the same time, the Coulombic efficiency of batteries reaches to 98%. This finding will impact the general approach for tailoring the properties of Li-metal anodes for achieving better Li-metal battery performance.

摘要

锂金属因其具有最高的能量密度而成为最佳的阳极选择。然而,锂阳极由于枝晶锂生长和液体电解质的不断腐蚀而存在安全问题。在这里,提出了一种使用超薄和共形混合离子电子陶瓷导体(MIEC)来稳定锂阳极的有效策略。首先通过烧结单晶 LLTO 纳米颗粒获得具有优异离子电导率的超薄 LiLa[V]TiO(LLTO)陶瓷膜,其具有受控的表面各向异性和颗粒尺寸。然后通过引入甲苯作为催化剂在 LLTO 薄膜中开发出 MIEC 特性,这引发了 LLTO 和锂金属之间的化学反应,导致 LLTO 薄膜具有高电子导电性。蒸发甲苯后,形成具有共形和稳定界面的混合 LLTO/Li 阳极。当将混合阳极应用于锂金属电池中时,MIEC 陶瓷膜通过缓冲锂离子浓度梯度和平衡锂金属表面的二次电流分布来阻止电解质中的锂腐蚀和锂枝晶的形成。同时,电池的库仑效率达到 98%。这一发现将影响用于定制锂金属阳极性能以实现更好的锂金属电池性能的一般方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验