CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic.
Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
Chemistry. 2018 Apr 17;24(22):5849-5859. doi: 10.1002/chem.201705364. Epub 2018 Feb 19.
In proteins, the indole side chain of tryptophan can interact with water molecules either in-plane, forming hydrogen bonds, or out-of-plane, with the water molecule contacting the aromatic π face. The latter interaction can be either of the lone pair⋅⋅⋅π (lp⋅⋅⋅π) type or corresponds to the O-H⋅⋅⋅π binding mode, an ambiguity that X-ray structures usually do not resolve. Here, we report molecular dynamics (MD) simulations of a solvated β-galactosidase monomer, which illustrate how a water molecule located at the π face of an indole side chain of tryptophan can adapt to the position of proximate residues and "select" its binding mode. In one such site, the water molecule is predicted to rapidly oscillate between the O-H⋅⋅⋅π and lp⋅⋅⋅π binding modes, thus gaining entropic advantage. Our MD simulations provide support for the role of lp⋅⋅⋅π interactions in the stabilization of protein structures.
在蛋白质中,色氨酸的吲哚侧链可以与平面内的水分子相互作用,形成氢键,或者与平面外的水分子相互作用,与芳香族的π 面接触。后一种相互作用可以是孤对···π(lp···π)类型,也可以对应于 O-H···π 结合模式,这种歧义通常在 X 射线结构中无法解决。在这里,我们报告了一种β-半乳糖苷酶单体的分子动力学(MD)模拟,该模拟说明了位于色氨酸吲哚侧链π 面的水分子如何适应邻近残基的位置并“选择”其结合模式。在这样的一个位置,水分子被预测会在 O-H···π 和 lp···π 结合模式之间快速振荡,从而获得熵优势。我们的 MD 模拟为 lp···π 相互作用在稳定蛋白质结构中的作用提供了支持。