Department of Biomedical Engineering, Rutgers, NJ, USA.
Australian Centre for Nanomedicine, UNSW, Sydney, Australia.
Angew Chem Int Ed Engl. 2018 Feb 5;57(6):1557-1562. doi: 10.1002/anie.201711044. Epub 2018 Jan 9.
The complexity of polymer-protein interactions makes rational design of the best polymer architecture for any given biointerface extremely challenging, and the high throughput synthesis and screening of polymers has emerged as an attractive alternative. A porphyrin-catalysed photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerisation was adapted to enable high throughput synthesis of complex polymer architectures in dimethyl sulfoxide (DMSO) on low-volume well plates in the presence of air. The polymerisation system shows remarkable oxygen tolerance, and excellent control of functional 3- and 4-arm star polymers. We then apply this method to investigate the effect of polymer structure on protein binding, in this case to the lectin concanavalin A (ConA). Such an approach could be applied to screen the structure-activity relationships for any number of polymer-protein interactions.
聚合物-蛋白质相互作用的复杂性使得为任何给定的生物界面设计最佳聚合物结构变得极具挑战性,而聚合物的高通量合成和筛选已成为一种有吸引力的替代方法。本研究采用卟啉催化的光诱导电子/能量转移-可逆加成-断裂链转移(PET-RAFT)聚合,在空气中、在低体积的微量离心管中、在 DMSO 中实现了复杂聚合物结构的高通量合成。该聚合体系具有显著的耐氧性,可极好地控制功能性 3 臂和 4 臂星型聚合物。然后,我们将该方法应用于研究聚合物结构对蛋白质结合的影响,在这种情况下,是对凝集素伴刀豆球蛋白 A(ConA)的影响。这种方法可以用于筛选任何数量的聚合物-蛋白质相互作用的结构-活性关系。