Suppr超能文献

一种再现蜜蜂群体集体动力学的离散粒子模型。

A discrete particle model reproducing collective dynamics of a bee swarm.

机构信息

Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

出版信息

Comput Biol Med. 2018 Feb 1;93:158-174. doi: 10.1016/j.compbiomed.2017.12.022. Epub 2018 Jan 2.

Abstract

In this article, we present a microscopic discrete mathematical model describing collective dynamics of a bee swarm. More specifically, each bee is set to move according to individual strategies and social interactions, the former involving the desire to reach a target destination, the latter accounting for repulsive/attractive stimuli and for alignment processes. The insects tend in fact to remain sufficiently close to the rest of the population, while avoiding collisions, and they are able to track and synchronize their movement to the flight of a given set of neighbors within their visual field. The resulting collective behavior of the bee cloud therefore emerges from non-local short/long-range interactions. Differently from similar approaches present in the literature, we here test different alignment mechanisms (i.e., based either on an Euclidean or on a topological neighborhood metric), which have an impact also on the other social components characterizing insect behavior. A series of numerical realizations then shows the phenomenology of the swarm (in terms of pattern configuration, collective productive movement, and flight synchronization) in different regions of the space of free model parameters (i.e., strength of attractive/repulsive forces, extension of the interaction regions). In this respect, constraints in the possible variations of such coefficients are here given both by reasonable empirical observations and by analytical results on some stability characteristics of the defined pairwise interaction kernels, which have to assure a realistic crystalline configuration of the swarm. An analysis of the effect of unconscious random fluctuations of bee dynamics is also provided.

摘要

在本文中,我们提出了一个微观离散数学模型,用于描述蜜蜂群体的集体动力学。具体来说,每只蜜蜂都根据个体策略和社会互动来移动,前者涉及到达目标目的地的愿望,后者则涉及排斥/吸引刺激和对齐过程。昆虫实际上倾向于与群体的其他成员保持足够的接近,同时避免碰撞,并且它们能够跟踪和同步它们的运动到其视野内的一组给定邻居的飞行。因此,蜜蜂云的集体行为是从非局部的短/长程相互作用中产生的。与文献中的类似方法不同,我们在这里测试了不同的对齐机制(即基于欧几里得或拓扑邻域度量),这些机制也会影响昆虫行为的其他社会组成部分。然后,一系列数值实现展示了群体的现象学(就模式配置、集体生产运动和飞行同步而言)在自由模型参数空间的不同区域(即,吸引力/排斥力的强度,相互作用区域的扩展)。在这方面,对这些系数的可能变化的约束既来自合理的经验观察,也来自对所定义的成对相互作用核的某些稳定性特征的分析结果,这些结果必须确保群体的现实晶体配置。还提供了对蜜蜂动力学无意识随机波动影响的分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验