Suppr超能文献

溅射合成的六方结构ZnO-ZnS复合纳米棒的壳层厚度依赖性光催化活性

Shell Layer Thickness-Dependent Photocatalytic Activity of Sputtering Synthesized Hexagonally Structured ZnO-ZnS Composite Nanorods.

作者信息

Liang Yuan-Chang, Lo Ya-Ru, Wang Chein-Chung, Xu Nian-Cih

机构信息

Institute of Materials Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan.

出版信息

Materials (Basel). 2018 Jan 7;11(1):87. doi: 10.3390/ma11010087.

Abstract

ZnO-ZnS core-shell nanorods are synthesized by combining the hydrothermal method and vacuum sputtering. The core-shell nanorods with variable ZnS shell thickness (7-46 nm) are synthesized by varying ZnS sputtering duration. Structural analyses demonstrated that the as-grown ZnS shell layers are well crystallized with preferring growth direction of ZnS (002). The sputtering-assisted synthesized ZnO-ZnS core-shell nanorods are in a wurtzite structure. Moreover, photoluminance spectral analysis indicated that the introduction of a ZnS shell layer improved the photoexcited electron and hole separation efficiency of the ZnO nanorods. A strong correlation between effective charge separation and the shell thickness aids the photocatalytic behavior of the nanorods and improves their photoresponsive nature. The results of comparative degradation efficiency toward methylene blue showed that the ZnO-ZnS nanorods with the shell thickness of approximately 17 nm have the highest photocatalytic performance than the ZnO-ZnS nanorods with other shell layer thicknesses. The highly reusable catalytic efficiency and superior photocatalytic performance of the ZnO-ZnS nanorods with 17 nm-thick ZnS shell layer supports their potential for environmental applications.

摘要

通过水热法和真空溅射相结合的方法合成了ZnO-ZnS核壳纳米棒。通过改变ZnS溅射时间,合成了具有可变ZnS壳层厚度(7-46纳米)的核壳纳米棒。结构分析表明,生长的ZnS壳层结晶良好,具有ZnS(002)的择优生长方向。溅射辅助合成的ZnO-ZnS核壳纳米棒为纤锌矿结构。此外,光致发光光谱分析表明,ZnS壳层的引入提高了ZnO纳米棒的光激发电子和空穴分离效率。有效电荷分离与壳层厚度之间的强相关性有助于纳米棒的光催化行为,并改善其光响应特性。对亚甲基蓝的比较降解效率结果表明,壳层厚度约为17纳米的ZnO-ZnS纳米棒比其他壳层厚度的ZnO-ZnS纳米棒具有最高的光催化性能。具有17纳米厚ZnS壳层的ZnO-ZnS纳米棒的高可重复使用催化效率和优异的光催化性能支持了它们在环境应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25bf/5793585/07dd8e70a44a/materials-11-00087-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验