Suppr超能文献

利用图像特征和区域分割技术检测热侧视机载雷达图像中的溢油情况。

Oil Spill Detection in Terma-Side-Looking Airborne Radar Images Using Image Features and Region Segmentation.

作者信息

Gil Pablo, Alacid Beatriz

机构信息

Department of Physics, Systems Engineering and Signal Theory, University of Alicante, Alicante 03690, Spain.

Computer Science Research Institute, University of Alicante, Alicante 03690, Spain.

出版信息

Sensors (Basel). 2018 Jan 8;18(1):151. doi: 10.3390/s18010151.

Abstract

This work presents a method for oil-spill detection on Spanish coasts using aerial Side-Looking Airborne Radar (SLAR) images, which are captured using a Terma sensor. The proposed method uses grayscale image processing techniques to identify the dark spots that represent oil slicks on the sea. The approach is based on two steps. First, the noise regions caused by aircraft movements are detected and labeled in order to avoid the detection of false-positives. Second, a segmentation process guided by a map saliency technique is used to detect image regions that represent oil slicks. The results show that the proposed method is an improvement on the previous approaches for this task when employing SLAR images.

摘要

这项工作提出了一种利用航空侧视机载雷达(SLAR)图像在西班牙海岸进行溢油检测的方法,这些图像是使用泰雷玛传感器拍摄的。所提出的方法使用灰度图像处理技术来识别代表海面上浮油的暗斑。该方法基于两个步骤。首先,检测并标记由飞机运动引起的噪声区域,以避免误报检测。其次,使用由地图显著性技术引导的分割过程来检测代表浮油的图像区域。结果表明,在所使用的SLAR图像用于此任务时,所提出的方法比以前的方法有所改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfb5/5795936/bb3672e49a57/sensors-18-00151-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验