Suppr超能文献

蛋白质疏水相互作用的病理生理学意义:一个新兴假说。

Pathophysiological significance of protein hydrophobic interactions: An emerging hypothesis.

机构信息

Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Science, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C St., 02-776 Warsaw, Poland.

出版信息

Med Hypotheses. 2018 Jan;110:15-22. doi: 10.1016/j.mehy.2017.10.021. Epub 2017 Dec 22.

Abstract

Fibrinogen is a unique protein that is converted into an insoluble fibrin in a single enzymatic event, which is a characteristic feature of fibrinogen due to its susceptibility to fibrinolytic degradation and dissolution. Although thrombosis is a result of activated blood coagulation, no explanation is being offered for the persistent presence of fibrin deposits in the affected organs. A classic example is stroke, in which the thrombolytic therapy is effective only during the first 3-4 h after the onset of thrombosis. This phenomenon can now be explained in terms of the modification of fibrinogen structure induced by hydroxyl radicals generated during the period of ischemia caused, in turn, by the blocking of the blood flow within the obstructed vessels. Fibrinogen modification involves intra-to intermolecular disulfide rearrangement induced by the reductive power of hydroxyl radicals that result in the exposition of buried hydrophobic epitopes. Such epitopes react readily with each other forming linkages stronger than the peptide covalent bonds, thus rendering them resistant to the proteolytic degradation. Also, limited reduction of human serum albumin (HSA) generates hydrophobic polymers that form huge insoluble complexes with fibrinogen. Consequently, such insoluble copolymers can be deposited within the circulation of various organs leading to their dysfunction. In conclusion, the study of protein hydrophobic interactions induced by a variety of nutritional and/or environmental factors can provide a rational explanation for a number of pathologic conditions including cardiovascular, neurologic, and other degenerative diseases including cancer.

摘要

纤维蛋白原是一种独特的蛋白质,在单一的酶促反应中转化为不溶性纤维蛋白,这是纤维蛋白原的一个特征,因为它容易被纤维蛋白溶解降解和溶解。尽管血栓形成是激活血液凝固的结果,但对于受影响器官中持续存在的纤维蛋白沉积物,没有给出解释。一个典型的例子是中风,其中溶栓治疗仅在血栓形成后 3-4 小时内有效。这种现象现在可以用在缺血期间产生的羟基自由基引起的纤维蛋白原结构修饰来解释,而缺血又是由阻塞血管内的血流阻塞引起的。纤维蛋白原修饰涉及到由羟基自由基的还原力诱导的分子内到分子间二硫键重排,导致埋藏的疏水性表位暴露。这些表位很容易相互反应,形成比肽共价键更强的键,从而使它们抵抗蛋白水解降解。此外,人血清白蛋白(HSA)的有限还原生成疏水性聚合物,这些聚合物与纤维蛋白原形成巨大的不溶性复合物。因此,这种不溶性共聚物可以在各种器官的循环中沉积,导致其功能障碍。总之,对各种营养和/或环境因素诱导的蛋白质疏水相互作用的研究可以为包括心血管、神经和其他退行性疾病(包括癌症)在内的许多病理状况提供合理的解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验