Suppr超能文献

基于“调控酶”样策略的螺旋反转响应速度控制。

Response speed control of helicity inversion based on a "regulatory enzyme"-like strategy.

机构信息

Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan.

Graduate School of Natural Science and Technology / Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.

出版信息

Sci Rep. 2018 Jan 9;8(1):137. doi: 10.1038/s41598-017-16503-1.

Abstract

In biological systems, there are many signal transduction cascades in which a chemical signal is transferred as a series of chemical events. Such successive reaction systems are advantageous because the efficiency of the functions can be finely controlled by regulatory enzymes at an earlier stage. However, most of artificial responsive molecules developed so far rely on single-step conversion, whose response speeds have been difficult to be controlled by external stimuli. In this context, developing artificial conversion systems that have a regulation step similar to the regulatory enzymes has been anticipated. Here we report a novel artificial two-step structural conversion system in which the response speed can be controlled based on a regulatory enzyme-like strategy. In this system, addition of fluoride ion caused desilylation of the siloxycarboxylate ion attached to a helical complex, resulting in the subsequent helicity inversion. The response speeds of the helicity inversion depended on the reactivity of the siloxycarboxylate ions; when a less-reactive siloxycarboxylate ion was used, the helicity inversion rate was governed by the desilylation rate. This is the first artificial responsive molecule in which the overall response speed can be controlled at the regulation step separated from the function step.

摘要

在生物系统中,有许多信号转导级联,其中化学信号被传递为一系列化学事件。这种连续反应系统是有利的,因为功能的效率可以通过早期的调节酶精细控制。然而,到目前为止开发的大多数人工响应分子依赖于单步转换,其响应速度很难通过外部刺激来控制。在这种情况下,人们期望开发出具有类似于调节酶的调节步骤的人工转换系统。在这里,我们报告了一种新的人工两步结构转换系统,其中响应速度可以基于类似于调节酶的策略来控制。在该系统中,氟离子的加入引起与螺旋配合物相连的硅氧基羧酸根离子的脱硅烷化,从而导致随后的螺旋反转。螺旋反转的速度取决于硅氧基羧酸根离子的反应性;当使用反应性较低的硅氧基羧酸根离子时,螺旋反转速率由脱硅烷化速率控制。这是第一个可以在与功能步骤分开的调节步骤控制整体响应速度的人工响应分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/294c/5760571/f0642a532d6b/41598_2017_16503_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验