Leksa Vladimir, Schiller Herbert B, Stockinger Hannes
Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
Methods Mol Biol. 2018;1731:39-47. doi: 10.1007/978-1-4939-7595-2_4.
The plasminogen activation system, i.e., the fibrinolytic system, is one of the major plasma proteolytic pathways. The proteolytic conversion of the zymogen plasminogen to the active serine protease plasmin is on the cell surface catalyzed by the serine protease urokinase-type plasminogen activator (urokinase, uPA). Upon binding to the urokinase receptor (uPAR, CD87), single-chain pro-uPA is processed to double-chain uPA which in turn specifically converts cell-bound plasminogen to plasmin. Plasmin is harnessed in many physiological processes, e.g., blood clots' resolution, or proteolytic activation of growth factors. Plasmin is essential also for migratory cells, for instance, activated immune cells; however, malignant cells hijack plasmin for invasion as well. The activation of plasminogen to plasmin is thus at the physiological level tightly controlled. One of the negative regulators of plasminogen activation has been identified in the cation-independent mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R, CIMPR, CD222). M6P/IGF2R is a multifunctional receptor involved in protein sorting, internalization, and degradation, being considered a tumor suppressor. M6P/IGF2R binds both plasminogen and uPAR and facilitates in this way the proteolytic cleavage of uPAR resulting in the loss of the uPA binding on the cell surface. Hence, this molecular device contributes to the negative feedback loop in regulation of pericellular plasminogen activation and cell invasion.In this chapter, we describe the experimental approach, i.e., biotin-chasing assay, to evaluate uPAR stability and cleavage on the surface of cells.
纤溶酶原激活系统,即纤维蛋白溶解系统,是主要的血浆蛋白水解途径之一。在细胞表面,丝氨酸蛋白酶尿激酶型纤溶酶原激活剂(尿激酶,uPA)催化酶原纤溶酶原向活性丝氨酸蛋白酶纤溶酶的蛋白水解转化。单链pro - uPA与尿激酶受体(uPAR,CD87)结合后,被加工成双链uPA,进而特异性地将细胞结合的纤溶酶原转化为纤溶酶。纤溶酶参与许多生理过程,例如血凝块的溶解或生长因子的蛋白水解激活。纤溶酶对迁移细胞也至关重要,例如活化的免疫细胞;然而,恶性细胞也利用纤溶酶进行侵袭。因此,纤溶酶原向纤溶酶的激活在生理水平上受到严格控制。在阳离子非依赖性甘露糖6 - 磷酸/胰岛素样生长因子2受体(M6P/IGF2R,CIMPR,CD222)中已鉴定出纤溶酶原激活的负调节因子之一。M6P/IGF2R是一种多功能受体,参与蛋白质分选、内化和降解,被认为是一种肿瘤抑制因子。M6P/IGF2R同时结合纤溶酶原和uPAR,以这种方式促进uPAR的蛋白水解切割,导致细胞表面uPA结合丧失。因此,这种分子机制有助于细胞周围纤溶酶原激活和细胞侵袭调节中的负反馈回路。在本章中,我们描述了评估细胞表面uPAR稳定性和切割的实验方法,即生物素追踪分析。