Fleming Aaron M, Zhu Judy, Ding Yun, Visser Joshua A, Zhu Julia, Burrows Cynthia J
Department of Chemistry, University of Utah , Salt Lake City, Utah 84112-0850, United States.
Biochemistry. 2018 Feb 13;57(6):991-1002. doi: 10.1021/acs.biochem.7b01172. Epub 2018 Jan 24.
The cellular response to oxidative stress includes transcriptional changes, particularly for genes involved in DNA repair. Recently, our laboratory demonstrated that oxidation of 2'-deoxyguanosine (G) to 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG) in G-rich potential G-quadruplex sequences (PQSs) in gene promoters impacts the level of gene expression up or down depending on the position of the PQS in the promoter. In the present report, bioinformatic analysis found that the 390 human DNA repair genes in the genome ontology initiative harbor 2936 PQSs in their promoters and 5'-untranslated regions (5'-UTRs). The average density of PQSs in human DNA repair genes was found to be nearly 2-fold greater than the average density of PQSs in all coding and noncoding human genes (7.5 vs 4.3 per gene). The distribution of the PQSs in the DNA repair genes on the nontranscribed (coding) vs transcribed strands reflects that of PQSs in all human genes. Next, literature data were interrogated to select 30 PQSs to catalog their ability to adopt G-quadruplex (G4) folds in vitro using five different experimental tests. The G4 characterization experiments concluded that 26 of the 30 sequences could adopt G4 topologies in solution. Last, four PQSs were synthesized into the promoter of a luciferase plasmid and cotransfected with the G4-specific ligands pyridostatin, Phen-DC3, or BRACO-19 in human cells to determine whether the PQSs could adopt G4 folds. The cell studies identified changes in luciferase expression when the G4 ligands were present, and the magnitude of the expression changes dependent on the PQS and the coding vs template strand on which the sequence resided. Our studies demonstrate PQSs exist at a high density in human DNA repair gene promoters and a subset of the identified sequences may fold in vitro and in vivo.
细胞对氧化应激的反应包括转录变化,尤其是参与DNA修复的基因。最近,我们实验室证明,基因启动子中富含鸟嘌呤的潜在G-四链体序列(PQSs)中的2'-脱氧鸟苷(G)氧化为8-氧代-7,8-二氢-2'-脱氧鸟苷(OG)会根据PQS在启动子中的位置影响基因表达水平的上调或下调。在本报告中,生物信息学分析发现,基因组本体计划中的390个人类DNA修复基因在其启动子和5'-非翻译区(5'-UTR)中含有2936个PQSs。发现人类DNA修复基因中PQSs的平均密度几乎是所有人类编码和非编码基因中PQSs平均密度的2倍(每个基因7.5个与4.3个)。DNA修复基因中PQSs在非转录(编码)链与转录链上的分布反映了所有人类基因中PQSs的分布。接下来,查阅文献数据以选择30个PQSs,使用五种不同的实验测试对它们在体外形成G-四链体(G4)折叠的能力进行分类。G4表征实验得出结论,30个序列中的26个可以在溶液中采用G4拓扑结构。最后,将四个PQSs合成到荧光素酶质粒的启动子中,并在人类细胞中与G4特异性配体吡啶司他汀、Phen-DC3或BRACO-19共转染,以确定PQSs是否可以形成G4折叠。细胞研究发现,当存在G4配体时荧光素酶表达发生变化,表达变化的幅度取决于PQS以及序列所在的编码链与模板链。我们的研究表明,PQSs以高密度存在于人类DNA修复基因启动子中,并且所鉴定序列的一个子集可能在体外和体内折叠。