van Setten Michiel J, Costa Ramon, Viñes Francesc, Illas Francesc
Nanoscopic Physics, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain , 1348 Louvain-la-Neuve, Belgium.
Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona , Martí i Franqués 1, 08028 Barcelona, Spain.
J Chem Theory Comput. 2018 Feb 13;14(2):877-883. doi: 10.1021/acs.jctc.7b01192. Epub 2018 Jan 26.
Here we present a systematic study on the performance of different GW approaches: GW, GW with linearized quasiparticle equation (lin-GW), and quasiparticle self-consistent GW (qsGW), in predicting core level binding energies (CLBEs) on a series of representative molecules comparing to Kohn-Sham (KS) orbital energy-based results. KS orbital energies obtained using the PBE functional are 20-30 eV lower in energy than experimental values obtained from X-ray photoemission spectroscopy (XPS), showing that any Koopmans-like interpretation of KS core level orbitals fails dramatically. Results from qsGW lead to CLBEs that are closer to experimental values from XPS, yet too large. For the qsGW method, the mean absolute error is about 2 eV, an order of magnitude better than plain KS PBE orbital energies and quite close to predictions from ΔSCF calculations with the same functional, which are accurate within ∼1 eV. Smaller errors of ∼0.6 eV are found for qsGW CLBE shifts, again similar to those obtained using ΔSCF PBE. The computationally more affordable GW approximation leads to results less accurate than qsGW, with an error of ∼9 eV for CLBEs and ∼0.9 eV for their shifts. Interestingly, starting GW from PBE0 reduces this error to ∼4 eV with a slight improvement on the shifts as well (∼0.4 eV). The validity of the GW results is however questionable since only linearized quasiparticle equation results can be obtained. The present results pave the way to estimate CLBEs in periodic systems where ΔSCF calculations are not straightforward although further improvement is clearly needed.
在此,我们针对不同的GW方法:GW、带线性化准粒子方程的GW(lin - GW)以及准粒子自洽GW(qsGW)在预测一系列代表性分子的芯能级结合能(CLBEs)方面的性能进行了一项系统研究,并与基于Kohn - Sham(KS)轨道能量的结果进行了比较。使用PBE泛函获得的KS轨道能量比通过X射线光电子能谱(XPS)得到的实验值低20 - 30 eV,这表明对KS芯能级轨道的任何类似Koopmans的解释都显著失败。qsGW的结果使CLBEs更接近XPS的实验值,但仍偏大。对于qsGW方法,平均绝对误差约为2 eV,比普通的KS PBE轨道能量好一个数量级,并且与使用相同泛函的ΔSCF计算的预测相当接近,后者在约1 eV范围内是准确的。对于qsGW的CLBE位移,发现误差较小,约为0.6 eV,同样与使用ΔSCF PBE得到的结果相似。计算成本更低的GW近似导致的结果比qsGW的准确性更低,CLBEs的误差约为9 eV,其位移的误差约为0.9 eV。有趣的是,从PBE0开始的GW将此误差降低到约4 eV,并且在位移方面也有轻微改善(约0.4 eV)。然而,由于只能获得线性化准粒子方程的结果,GW结果的有效性值得怀疑。目前的结果为在周期系统中估计CLBEs铺平了道路,在这些系统中,ΔSCF计算并不直接,尽管显然还需要进一步改进。