Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
J Chem Theory Comput. 2022 Mar 8;18(3):1569-1583. doi: 10.1021/acs.jctc.1c01180. Epub 2022 Feb 9.
We present an accurate computational approach to calculate absolute -edge core electron excitation energies as measured by X-ray absorption spectroscopy. Our approach employs an all-electron Bethe-Salpeter equation (BSE) formalism based on quasiparticle energies (BSE@) using numeric atom-centered orbitals (NAOs). The BSE@ method has become an increasingly popular method for the computation of neutral valence excitation energies of molecules. However, it was so far not applied to molecular -edge excitation energies. We discuss the influence of different numerical approximations on the BSE@ calculation and employ in our final setup (i) exact numeric algorithms for the frequency integration of the self-energy, (ii) and BSE starting points with ∼50% of exact exchange, (iii) the Tamm-Dancoff approximation and (iv) relativistic corrections. We study the basis set dependence and convergence with common Gaussian-type orbital and NAO basis sets. We identify the importance of additional spatially confined basis functions as well as of diffuse augmenting basis functions. The accuracy of our BSE@ method is assessed for a benchmark set of small organic molecules, previously used for benchmarking the equation-of-motion coupled cluster method [Peng et al., , , , 4146], as well as the medium-sized dibenzothiophene (DBT) molecule. Our BSE@ results for absolute excitation energies are in excellent agreement with the experiment, with a mean average error of only 0.63 eV for the benchmark set and with errors <1 eV for the DBT molecule.
我们提出了一种精确的计算方法,用于计算 X 射线吸收光谱测量的绝对边缘芯电子激发能。我们的方法采用基于准粒子能的全电子 Bethe-Salpeter 方程(BSE)形式,使用数值原子中心轨道(NAO)。BSE@方法已成为计算分子中性价激发能的一种越来越流行的方法。然而,到目前为止,它尚未应用于分子边缘激发能的计算。我们讨论了不同数值近似对 BSE@计算的影响,并在最终设置中采用了(i)用于自能频率积分的精确数值算法,(ii)具有约 50%精确交换的 BSE 起始点,(iii)Tamm-Dancoff 近似和(iv)相对论修正。我们研究了常见的高斯型轨道和 NAO 基组的基组依赖性和收敛性。我们确定了额外的空间限制基函数以及弥散增强基函数的重要性。我们的 BSE@方法的准确性已通过先前用于基准运动方程耦合簇方法的小有机分子基准集[Peng 等人,,,,4146]以及中等大小的二苯并噻吩(DBT)分子进行了评估。我们的 BSE@绝对激发能结果与实验非常吻合,基准集的平均平均误差仅为 0.63 eV,DBT 分子的误差<1 eV。